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Abstract
The research and development objectives and results obtained over the course of MRC’s Integrated
Sensing and Processing contract are compiled in this document. The effort comprised several tech-
nical areas in radar- and communication-signal processing that could substantially benefit from an
integration of sensors with processing. In particular, we studied problems related to the statisti-
cal and algebraic characterization of sources and sensors, the exploitation of channel and source
statistics for improved communication in harsh environments, the determination of the minimum
required link bandwidth and associated quantization scheme for transmission of local sensor es-
timates to other sensors or to a central processor, and problems in the area of decision-directed
sensing and sensor-network management. In this latter technical area, we focused on the sensor-
scheduling problem using partially observable Markov decision processes and on the problem of
combining multiple single-modality target classifiers to form a hyperclassifier whose performance
exceeds that of any of the constituent classifiers while minimizing the amount of data requested
from the array of available sensor modalities.
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1 Introduction

This document provides the final report for DARPA/AFRL contract F33615–02–C–1198 “Inte-
grated Sensing and Processing (ISP).” The structure of the report is as follows. An executive
summary is provided in Section 2, and Section 3 provides links to all the technical reports and
published papers produced under the contract. If this report is being read electronically, these re-
ports can also be viewed by clicking the colored text representing the report titles. Concluding
remarks are made in Section 4.

2 Executive Summary

2.1 Overview of Project Objectives

The original objectives of the MRC-CSU ISP program are stated in the following list, which is
taken from the technical proposal submitted to DARPA.

1. Develop constituent mathematical tools for ISP. Here the objective is to develop tools for
integrating sensing and processing over as wide a range of application areas as possible. In
particular, tools were to be developed relating to the following fundamental signal processing
areas:

(a) Characterization of sources and sensors.

(b) Exploitation of channel and target statistics.

(c) Sensor deployment and clustering.

(d) Bandwidth allocation and information quantization.

(e) Decision-directed sensing and processing.

2. Construct a general ISP framework. Here the idea is to refine the developed tools and cre-
ate a framework for developing the interfaces between the tools, which can then be adapted
to a specific problem of interest.

(a) Refinement of developed mathematical tools.

(b) Integration of mathematical tools into a general framework.

(c) Validate framework.

3. Apply ISP tools and framework to two problems in radar and communications. In this
third major objective, the idea is to apply the developed ISP tools and framework to each of
two major problems of interest to the government: automatic target recognition and high-
speed MIMO communication. The outcome would be a quantitative characterization of the
performance or cost benefits of utilizing the new ISP tools in these familiar settings.

(a) Radar-based automatic target recognition.

(b) Multi-input multi-output communication link.
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After the October 2003 ISP Program Review, DARPA decided not to exercise the FY04 and FY05
funding options for this effort. This lead to a serious descoping from our original objectives; the
adjusted program scope is described in the following subsection. The reduced set of objectives was
approved by the AFRL and DARPA program managers.

2.1.1 Program Objectives After Funding Decrease

1. Develop constituent mathematical tools for ISP.

(a) Characterization of sources and sensors.

i. Beamforming versus diversity combining, connections between radar scattering
functions and time-frequency distribution analysis, connection between sensor-
network control and radar-parameter adaptation [CSU].

(b) Decision-directed sensing and processing.

i. Partially observable Markov decision processes (POMDPs) for control and man-
agement of sensor networks [CSU].

ii. Binary hypertrees for automatic target recognition [MRC].

2.2 Technical Approach

The technical approach employed for each of the three technical objectives is described at a high
level in this section. The approaches employed for two additional objectives that were pursued
prior to the descoping are also described. For more detail, please consult the appropriate technical
report in Section 3.

2.2.1 Exploitation of Channel Statistics (Pre-Descoping)

We focus on the exploitation of communication-channel statistics to enable radio communication
that is more robust to time-varying channel conditions, such as multipath and cochannel inter-
ference. The operational idea is to extend the notion of rate-adaptive communication links to
modulation-adaptive communication links. In these latter links, many more system parameters are
allowed to vary over time with respect to the former links, in which only the constellation of the
employed digital QAM signal is allowed to vary. To develop this idea, we followed an information-
theoretic technical approach. In particular, we developed an abstracted version of the problem and
modeled the communication system and the physical channel as first-order Markov random pro-
cesses. This leads to a model of the communication system that is constant over fixed periods of
time, during which it is characterized as a discrete memoryless channel. We developed formulas
for the capacity of such an adaptive system, which build on known formulas for a fixed system in
the face of a time-varying physical channel.

2.2.2 Bandwidth Allocation and Quantization (Pre-Descoping)

The technical approach here is to formulate an optimization problem in which the sensors in a
network can quantize their raw information and transmit it, or they can transform the information,
then quantize and transmit. The idea is to determine whether any particular ordering of operations
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is required for best performance. The results of this research can then be used in the design of
quantization and transmission elements for wireless sensor networks. In particular, it may be quite
beneficial for each sensor to quantize and transmit to a more sophisticated central processor rather
than outfit the sensors themselves with sophisticated estimators and quantizers.

2.2.3 Characterization of Sources and Sensors

The technical approach for characterization of sources and sensors is to attempt to unify aspects of
radar signal processing with wireless communication signal processing. In particular, an attempt is
made to unify the ideas of time-frequency distributions and radar scattering functions. The benefit
of this approach is that if a connection is forged, then the large body of work on time-frequency
distributions may be brought to bear on the scattering-function estimation (channel estimation)
problem.

2.2.4 POMDPs for Sensor Network Control and Management

The technical approach employed for sensor network control and management is first to focus
on the sensor scheduling subproblem, and then to apply partially observable Markov decision
processes to this subproblem. The scheduling problem is a serious one, involving as it does the
ultimate tracking performance of the network as well as the lifespan and long-term utility of the
network. Careful scheduling of the on and off states of the sensors can substantially increase
the network lifetime and permit the network to be maximally useful (though degraded, perhaps)
throughout its lifespan. The POMDP formulation of the problem uses particle filtering to estimate
prior probabilities of the system state instead of assuming any particular probabilistic model, and
this makes the approach much more realistic. The performance of the scheduler is compared to the
closest-point-of-approach algorithm, a simple and popular alternative, which cannot make use of
crucial sensor attributes such as individual error statistics, current power level remaining, cost of
use, etc.

2.2.5 Binary Hypertree Classifiers for ATR

The technical approach here is to build on previously developed tree-based classifiers for ATR .
This classifier approach employs the local discriminant basis (LDB) to automatically determine
the best wavelet representation of the set of class inputs for the purpose of classification. This
should be contrasted with the standard wavelet approach of finding the best wavelet representation
(basis) for a set of inputs for the purpose of compression. To integrate sensing and processing, we
envision an ATR system that has at its disposal several sensing modalities (e.g., different camera
types or a set of distinct radar waveforms and bandwidths). A tree-based recognizer is constructed
for each of the modalities and as many measurement functions (e.g., wavelet types) as desired,
creating a family of tree-based classifiers. The hypertree idea is to link these trees together such
that if an ambiguous node is reached in one tree, the node points to the tree having the best chance
of removing the ambiguity. This tree is “jumped to” and if a new sensing is required, the data
is obtained. In this way, the classification is performed in a sequential manner, and the best data
subspace for classification is automatically determined by adaptively responding to the data.
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2.3 Programmatic Approach

The programmatic approach involved the use of technical resources at MRC, Colorado State Uni-
versity (CSU), and a consultant. Funding was split nearly evenly between MRC and CSU. MRC
was the prime contractor and CSU was the single subcontractor used for ISP. The single consultant
was John Gubner.

The AFRL was MRC’s immediate customer. The AFRL provided program management for
several of the DARPA ISP awardees.

2.4 Accomplishments

The accomplishments of the contract involved technical progress on the three objectives involved
in the descoped effort as well as progress on two additional objectives prior to the descoping. These
are briefly described here at a high level. The accomplishments are described in more detail in the
technical reports of Section 3.

1. Exploitation of channel and target statistics (pre-descoping): ISP for generic communi-
cation links. The capacity formula for a general time-varying digital communication system
facing a time-varying physical channel–both modeled as Markov processes—was obtained.
The ultimate capacity of such a system requires that the formula be evaluated for an infinite
number of channel uses. We implemented the general formula in MATLAB and found that
evaluating it was costly for even ten channel uses when the parameters of the Markov pro-
cesses and the particular digital communication system parameters (e.g., alphabet size) were
realistic. Nevertheless, we were able to show that the capacity of an ISP-enabled adaptive-
modulation system can be orders of magnitude larger than that for a static system facing a
time-varying channel. A complete technical report was prepared and submitted. It can be
found in Section 3.2.

2. Bandwidth allocation and quantization (pre-descoping): canonical coordinates for trans-
form coding. Assuming the additive white noise model for quantization, we have proved
that the correct coordinate systems for quantization are the systems of half and full canonical
coordinates. Half canonical coordinates minimize the trace of the error covariance matrix,
while full canonical coordinates minimize the determinant. Others have previously proved
that canonical coordinates are optimum for rank reduction as well. Together with our results,
this means that we can first choose a coordinate system and then decide how many bits to
spend on the components. See Section 3.3.

3. Characterization of sources and sensors: time-frequency distributions and scattering
functions. We have studied the estimation of time-frequency distributions (TFDs) and esti-
mation of wireless scattering functions (SFs). We have shown that the most general quadratic
estimator of each that is delay- and modulation-invariant may be written as a convolution of
a Rihaczek TF density with a TF kernel function. The representation illustrates a fundamen-
tal difference in the design aspects of the two problems. In TFD estimation, the Rihaczek
TF density is the raw Rihaczek function for the time series, and the kernel is designed to
convolve in time and frequency to perform a smoothing role. In SF estimation, the kernel is
the true SF and the Rihaczek TF density is that for a transmitter signal designed to decon-
volve in time and frequency to perform an inversion role. In each case, the obtained Fourier
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transform identities in a four-corners diagram allow for kernel or Rihaczek design in the
transformed space of ambiguity functions. See Section 3.1.

4. Decision-directed sensing and processing: POMDPs for sensor network control. We
have developed a sensor-scheduling algorithm based on POMDPs. Instead of relying on an-
alytic expressions for belief states, we use a Monte Carlo approach that combines particle
filtering for non-Gaussian nonlinear belief-state estimation with a

�
-value approximation

method that allows long-term look-ahead and thereby avoids producing greedy algorithms.
Our algorithm is shown to outperform the closest-point-of-approach algorithm using simu-
lated data. This indicates that the use of POMDPs may lead to much more efficient sensor
network management, and therefore much longer-lived sensor networks. See Section 3.4.1.

5. Decision-directed sensing and processing: binary hypertrees for ATR. In the first part
of this work, we established the mathematical foundations for representing and analyzing
binary-tree classifiers that are based on exploitation of the LDB. We defined three basic
classifier types:

(a) The binary tree classifier (BTC). This classifier is associated with a single modality and
a single measurement function (e.g. wavelet type).

(b) The binary hypertree classifier (BHC). This classifier is comprised of a linked set of
BTCs. As such, it encompasses multiple modalities and/or multiple measurement func-
tions.

(c) The binary supertree classifier (BSC). This classifier represents optimal (fusion) per-
formance. It is a BTC but its input is the concatenation (or tiling for two-dimensional
inputs) of all available modalities.

The mathematical work established the basic performance ordering of � BTC ��� BHC �
BSC. The mathematics of this work were submitted in a technical report and can be found
in Section 3.

In the second part of the hypertree work, we implemented the three basic classifiers in MAT-
LAB to provide a proof of concept and to evaluate performance claims made in the analyt-
ical work. We studied the performance of the classifiers using one- and two-dimensional
synthetic problems and by applying them to several collected public data sets. A key ac-
complishment is the construction of an algorithm to automatically jointly determine a good
(BTC) tree topology and classifier parameters for an arbitrary classification problem. We
found that the BTC was able to embody the essential class ambiguity structure of the prob-
lems under study.

For the one-dimensional problem, which involved the sixteen maximal-length shift-register
(MLSR) sequences for shift-register length eight, we found that the BTCs, BHC, and BSC
all delivered good-to-excellent performance and that performance was dependent on the par-
ticular wavelet type.

For the two-dimensional problem, which involved four modalities and eight classes, we
found that the predicted performance ordering held in all cases and that performance was
not particularly sensitive to the wavelet type. This is due to the presence of severe class
ambiguities (large equivalence classes) for each of the modalities. See Section 3.4.2.
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3 Technical Reports and Publications

When viewing this document electronically, click on the title of the desired technical document to
view it in your default PDF-file viewer. The report PDF files are contained in subdirectories of the
directory containing this document. If you are reading a printed form of the document, each report
is an appendix, and the page number for the appendix is provided next to the document title in the
list below.

3.1 Algebraic Characterization of Sources and Sensors

1. “Estimating Time-Frequency Distributions and Scattering Functions Using the Rihaczek
Distribution” [1]. See Appendix A, page 11.

2. “The Susman, Moyal, and Janssen Formulas Follow as Fourier Transform Identities . . . ” [2].
See Appendix B, page 16.

3. “ISP Technical Report”. See Appendix C, page 17.

3.2 Exploitation of the Statistics of Propagation Channels and Targets

1. “ISP for Communication Links: Mathematical Modeling, Problem Formulation,”
and Analysis” [4]. See Appendix D, page 40.

3.3 Bandwidth Allocation and Quantizing

1. “Canonical Coordinates for Transform Coding of Random Sources from Noisy
Observations” [5]. See Appendix E, page 77.

2. “Canonical Coordinates are the Right Coordinate System for Transform Coding of Noisy
Sources” [6]. See Appendix F, page 96.

3.4 Decision-Directed Sensing and Processing

3.4.1 Sensor Management and Control

1. “Sensor Scheduling for Target Tracking: A Monte Carlo Sampling Approach” [9]. This work
was also published, with small differences, in [7] and [8]. See Appendix G, page 100.

3.4.2 Hypertree Classifiers

1. “Binary Hypertree Classifiers for ATR: Definitions, Analysis, and Algorithms” [10]. See Ap-
pendix H, page 114.

2. “Binary Hypertree Classifiers for ATR: Experimental Study” [11]. See Appendix I, page
160.
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3.5 Applications of the Mathematical Methodology

Due to the funding constraints imposed on MRC during the performance of this contract, the
developed algorithmic technology was not applied to any real-world defense-related collected data
sets.

4 Conclusions

We make the following conclusions based on our ISP work under this contract.

1. For general communication links, a large increase in capacity can be obtained by employ-
ing the ISP-inspired notion of modulation adaptation. This notion generalizes rate-adaptive
signaling to modulation-adaptive signaling by allowing multiple aspects of the transmitted
waveform to be adapted, such as the transmission band, modulation type, coding, and mod-
ulation rates.

2. For sensor networks, partially observable Markov decision processes (POMDPs) appear to
be very useful for the sensor-scheduling problem. In particular, this approach naturally al-
lows various real-world sensor constraints, such as battery life, current power level, cost of
operation, etc., to be taken into account in a dynamic fashion. Such an approach leads to
more efficient use of the total network resources, and can thereby extend the useful lifespan
of a sensor network.

3. For automatic target recognition, we have found that the notion of hypertree classification has
significant merit. In particular, the developed method automatically finds the best sequential
classifier that can be built from the collection of constituent classifiers, any one of which can
be arbitrarily bad. A significant outcome of this work is the development of an automated
training algorithm for jointly determining the tree topology, class splits, and feature vectors
for an arbitrary classification problem.
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ABSTRACT
In this paperwe study two problems: estimationof time-
frequency distributions (TFDs) and estimationof wireless
or radarscatteringfunctions (SFs). We show that the most
general quadratic, delay-andmodulation-invariant estima-
tor of eachmay be written asa convolution of a Rihaczek
TF density with a TF kernel. This representation comple-
mentsotherequivalentrepresentationsandestablishesafun-
damental connectionbetweenthe analysis of the two prob-
lems. However, the representation also illustratesa funda-
mentaldifference in design for the two problems. For TFD
estimation,theRihaczekTF densityis theraw Rihaczekfor
thetimeseriesandthekernelis designedto convolve in time
andfrequency for smoothing. For SFestimation,thekernel
is thetrueSFandtheRihaczekTF densityis thatfor a trans-
mitter signaldesignedto deconvolve in time andfrequency
for inversion. In eachcase,theFouriertransformidentitiesin
a four-cornersdiagram allow for kernelor Rihaczekdesign
in the transformedspaceof ambiguity functions. Designin
this spacethen producesspectrogramsand interferograms
for TFD estimation,andideal transmittersignalsfor SFes-
timation.

1. INTRODUCTION

In this paper we offer yet another representationfor theCo-
henclass[1] of quadratic, delay- andmodulation-invariant
time-frequency distributions (TFDs), this one basedon a
convolution of the RihaczekTF densitywith a TF kernel.
This representationis usedto producespectrogramsandin-
terferogramswhicharepractical estimatorsof TFDs.

We then ask whether this representation has any rel-
evance to the estimationof scatteringfunctions (SFs) for
wirelessand radarchannels. The answeris yes. In fact,
by following Gaarder’s original arguments[2], we find that
themostgeneral quadratic, delay-andmodulation-invariant
estimatorof the SF hasthe samerepresentation, namelya
convolutionof a RihaczekTF densitywith a TF kernel.But
herethesimilaritiesend,for thereis a key differencein de-
sign philosophy for TFD estimationandSFestimation.

In TFD estimation,the Rihaczekdensityis the raw Ri-
haczekfor thetime series,andtheTF kernelis a freedesign
variable. This kernelis designedto smooth in time andfre-
quency. In SF estimation,the TF kernelis the trueSF and
theRihaczekTF densityis a freevariable. This Rihaczekis
actuallytheRihaczekfor thetransmittedsignal,whichis de-
signedto invert in time andfrequency for thetrueSF. Thus,

for TFD estimationtheproblemis oneof designfor convolu-
tion, whereasfor SFestimationtheproblemis oneof design
for deconvolution. In eachcase,theFouriertransform iden-
tities in a four-cornersdiagramallow for kernelor Rihaczek
designin thetransformedspaceof ambiguity functions.De-
signin this spacethenproducesspectrogramsandinterfero-
grams for TFD estimation, andideal transmittersignalsfor
SFestimation.

Theequations we derive are

P̂xx
�
t � f ���

���
X
�
f ��� e j2π f 	 t 	 x 
 � t ��� e � t � t �� f � f ��� d f � dt �

for TFD estimation,and

P̂σ
�
τ � ν ���

���
X
�
ν ��� e j2πν 	 τ 	 x 
 � τ ��� Pσ

�
τ � τ �� ν � ν ��� dν � dτ �

for SF estimation. Thus, for TFD estimationthe prob-
lem is to designthe kernele

�
t � f � so that the raw Rihaczek

X
�
f � e j2π f t x 
 � t � is smoothed, whereasfor SFestimationthe

problem is to designthe transmittedsignal x
�
t � so that its

raw Rihaczekwill invert for theunknown scatteringfunction
Pσ
�
τ � ν � (alsocalledthechannel ambiguity function). Thus,

while the design objectivesaredifferent, thedefininganal-
ysis equations are identical. The transform dualsof these
equationsare

Γ̂xx
�
∆ f � ∆t ��� w

�
∆ f � ∆t � Γxx

�
∆ f � ∆t �

and
E
�
Γyy

�
∆ f � ∆t ����� RH

�
∆ f � ∆t � Γxx

�
∆ f � ∆t ���

where Γxx, w, and RH are the 2D Fourier transforms of
X
�
f � e j2π f t x 
 � t � , e, and Pσ , respectively. For TFD es-

timation, w
�
∆ f � ∆t � is designed, and for SF estimation,

Γxx
�
∆ f � ∆t � is designed.

2. RIHACZEK FOUR-CORNERS DIAGRAM

A four-cornersdiagramcanbeusedto illustraterelationships
betweentime-frequency distributions, time-varying system
representations,aswell asrelatedcorrelationsandconvolu-
tions.Considerthefour-cornersdiagramin Figure1. Webe-
gin in theEastwith theRihaczek[3] complex cross-energy
density,

γ f � g
�
t � f ��� F

�
f � e j2π ft g 
 � t ��� (1)
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ψ f � g
�
t � τ ��� f

�
t � τ � g 
 � t �

γ f � g
�
t � f ��� F

�
f � e j2π f t g 
 � t �Γ f � g

�
ν � τ �

Ψ f � g
�
ν � f ��� F

�
f � G 
 � f � ν �

�
f � τ

�
ν � t

�
ν � t

�
f � τ

Figure1: Rihaczekfour-corners diagram.

With
��� 1

τ � f denoting theinverseFourier transform oper-
atorfrom f to τ , wemaymove North to produce

ψ f � g
�
t � τ ��� ��� 1

τ � f γ f � g
�
t � f ��� f

�
t � τ � g 
 � t ��� (2)

Moving from Eastto South,

Ψ f � g
�
ν � f ��� � ν � tγ f � g

�
t � f ��� F

�
f � G 
 � f � ν ��� (3)

andfrom North to Westto find thecross-ambiguity function
for f andg,

Γ f � g
�
ν � τ ��� � ν � tψ f � g

�
t � τ ���

� ∞

� ∞
f
�
t � τ � g 
 � t � e � j2πνt dt �

(4)
The move from Southto Westyields an equivalentexpres-
sionfor thecross-ambiguity function:

Γ f � g
�
ν � τ ��� ��� 1

τ � f Ψ f � g
�
ν � f ���

� ∞

� ∞
F
�
f � G 
 � f � ν � e j2π f τ d f �

(5)
Defining the modulation and time-shift operators M fo

andTto asM fo
g
�
t ��� g

�
t � e j2π fot andTto g

�
t ��� g

�
t � to � , we

easilyfind covariant connections

ΓM fo
f � g � ν � τ ��� e j2π foτ Γ f � g � ν � fo � τ ���

ΓTto
f � g
�
ν � τ ��� Γ f � g

�
ν � τ � to ���

Γ f �M fo
g

�
ν � τ ��� Γ f � g � ν � fo � τ ���

Γ f � Tto
g

�
ν � τ ��� e

� j2πνtoΓ f � g � ν � τ � to ���
ΓM fa

f �M fb
g

�
ν � τ ��� e j2π faτ Γ f � g

�
ν � fb � fa � τ ���

andΓTta
f � Ttb

g

�
ν � τ ��� e

� j2πνtb Γ f � g � ν � τ � tb � ta � .
TheFourierTransform preservesinnerproducts. Since

Γ f � g
�
ν � τ ��� �

ν � t ��� 1
τ � f γ f � g

�
t � f � , we find  γ f � g � γy � x ! �

 Γ f � g � Γy � x ! , where

 γ f � g � γy � x ! �
� ∞

� ∞

� ∞

� ∞

�
γ f � gγ 
y � x � � t � f � dt d f �" f � y !  g � x ! 
 �

(6)
This resultis known asMoyal’s formula [4]:

 Γ f � g � Γy � x ! �� γ f � g � γy � x ! �� f � y !  g � x ! 
 � (7)

3. THE SUSSMAN FOUR-CORNERS DIAGRAM

Sussman[5] wasapparently the first to statea particularly
usefulidentity for ambiguity functions. ConsidertheSuss-
manfour-cornersdiagram in Figure2.

�
ψ f g

�
t1 � t � τ � ψ 
yx

�
t1 � τ � dt1 �

�
ψ f y

�
t1 � τ � t � ψ 
gx

�
t1 � t � dt1

Γ f y

�
f � t � Γ 
gx

�
f � t �Γ f g

�
ν � τ � Γ 
yx

�
ν � τ �

�
Ψf g

�
ν � f1 � f � Ψ 
yx

�
ν � f1 � d f1 �

�
Ψf y

�
f � f1 � ν � Ψ 
gx

�
ν � f1 � d f1

�
f � τ

�
ν � t

�
ν � t

�
f � τ

Figure2: Sussmanfour-cornersdiagram.

Begin with theconjugateproduct in theWest

w
�
ν � τ ��� Γ f � g

�
ν � τ � Γ 
y � x � ν � τ ��� (8)

SincetheNorth functionis n
�
t � τ ��� �#� 1

t � ν w
�
ν � τ � , we know

that n
�
t � τ � is the following correlation in t and conjugate

productin τ (refer alsoto Figure 1):

n
�
t � τ �$�

� ∞

� ∞
ψ f � g � t � � t � τ � ψ 
y � x � t � � τ � dt �

�
� ∞

� ∞
f
�
t � � t � τ � g 
 � t � � t � y 
 � t � � τ � x � t � � dt �

�
� ∞

� ∞
ψ f � y

�
t ��� τ � t � ψ 
g � x � t �%� t � dt �&�

Notethattoobtainthelastline fromthefirstabove,exchange
t with τ andg with y. Similarly, the remaining cornersof
Figure2 canbeobtained. TherelationshipbetweentheWest
andtheEastof Figure2 is known astheSussmanidentity:

�
f � τ � � 1

t � ν Γ f � g � ν � τ � Γ 
y � x � ν � τ ��� Γ f � y � f � t � Γ 
g � x � f � t ��� (9)

It is worth notingthatΓ f � g � ν � τ � is anambiguity function of
thelocal delayanddoppler variablesτ andν , andΓ f � y

�
f � t �

is an ambiguity function of the global frequency and time
variables f andt. It is alsoworthnotingthatfrom (9)

�
Γ f � yΓ 
g � x � � 0 � 0���

�'� �
Γ f � gΓ 
y � x � � ν � τ � dνdτ ;

i.e.,

�
Γ f � yΓ 
g � x � � 0 � 0���" f � y !  g � x ! 
 �" Γ f � g � Γy � x ! �

so that Moyal’s formula canbe viewedasa specialcaseof
theSussmanidentity.
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4. TIME-FREQUENCY ESTIMATION
FOUR-CORNERS DIAGRAM

We consider the two-channel Rihaczek-basedTF (time-
frequency) estimate

Pe
�
t � f ���

� ∞

� ∞

� ∞

� ∞
e
�
t � t �� f � f ��� γ f � g

�
t �&� f ��� dt � d f � (10)

in theEastof Figure3, whereγ f � g
�
t � f � is theRihaczekTF

distribution of (1). In Figure3, ( i denotesconvolution with
respectto the ith variable,and ( denotesconvolution with
respectto bothvariables.

With the aid of Figure 1 andwell known propertiesof
Fourier transforms, the remaining corners are easily veri-
fied. We mayinterprettheTF estimatein theWestasa win-
dow w

�
ν � τ � applied to the signalcross-ambiguity function

Γ f � g
�
ν � τ � .

Pn
�
t � τ ��� �

n ( 1 ψ f � g �
�
t � τ �

Pe
�
t � f ��� �

e ( γ f � g �
�
t � f �Pw

�
ν � τ ��� �

w ) Γ f � g �
�
ν � τ �

Ps
�
ν � f ��� �

s ( 2 Ψ f � g �
�
ν � f �

�
f � τ

�
ν � t

�
ν � t

�
f � τ

Figure3: Rihaczek-basedfour-corners diagramfor TF esti-
mation.

In [6] a discrete-time version of

P
�
t � f ���

�*�
f
�
t1 � t � g 
 � t2 � t � Q � t1 � t2 � e j2π f + t2 � t1 , dt1dt2

(11)
is consideredandshown to beanotherrepresentationfor the
most general memberof Cohen’s class[1] of TF distribu-
tions, which arequadratic, time- andfrequency-translation
invariant. Making the change of variablest1 � τ � t � and
t2 �-� t � in (11) weobtain

P
�
t � f ���

�.�
Q
�
τ � t ���/� t ��� ψ f � g

�
t � t �� τ � e � j2π f τ dt � dτ

� � f � τ � n ( 1 ψ f � g � � t � τ ��� �
e ( γ f � g � � t � f ��� Pe

�
t � f ���

wherewehaveusedn
�
t � τ �0� Q

�
τ � t �/� t � , sothatQ

�
t1 � t2 �1�

n
� � t2 � t1 � t2 � . It follows that the mostgeneralform of TF

estimatethat is quadratic and
�
t � f � translationinvariant can

beexpressedin theform of Pe
�
t � f � in (10).

UsingFigure3, we canwrite

Pe
�
t � f ���

�.�
Ψ f � g

�
ν � f � f ��� s � ν � f ��� e j2πνt d f � dν �

Lettingν � f2 � f1 and f � � f1, we obtain

Pe
�
t � f �2�

�3�
F
�
f � f1 � G 


�
f � f2 � Q̂

�
f1 � f2 � e j2π + f2 � f1 , td f1d f2 �

(12)

where we have used Q̂
�
f1 � f2 �4� � � f2 � t2

�
f1 � t1Q

�
t1 � t2 �5�� � f2 � t2e

� � t2 � f1 � e j2π f f t2 � s
�
f2 � f1 � f1 � , or s

�
ν � f �*�

Q̂
�
f � ν � f � . This is a frequency-frequency smoothed ver-

sionof (10),andthedualof (11). Thus,(10), (11), and(12)
aret- f , t-t, and f - f representationsfor theCohenclass.

5. INTERFEROGRAMS AND SPECTROGRAMS

In Figure 3, if the West window w
�
ν � τ �4� Γ 
v1 � v2

�
ν � τ � , is

itself anambiguityfunction involving two one-dimensional
window functions v1

� )6� andv2

� )6� , thenusing(9) theTF esti-
matebecomes

Pe
�
t � f ��� Γ f � v1

�
f � t � Γ 
g � v2

�
f � t ��� (13)

If Γv1 � v2

�
ν � τ � depends on some parameter Θ, say

Γv1 � v2

�
ν � τ �7� Γv1 � v2

�
ν � τ ;Θ � , thenwe may consider a West

window asa linearcombinationof theform

w
�
ν � τ ���

�
Γ 
v1v2

�
ν � τ ;Θ � W �

Θ � dΘ (14)

for a continuousparameter space,or

w
�
ν � τ ��� ∑

i
Γ 
v1v2

�
ν � τ ;Θi � W �

Θi � (15)

for a discreteparameterspace,whereW
�
Θ � is a weighting

function.
If v1

�
t ��� v2

�
t ��� M � fo

v
�
t � andW

�
Θ ��� Vo

�
fo � , then

w
�
ν � τ ���

� ∞

� ∞
Γ 
v� v � ν � τ � Vo

�
fo � e j2π foτ d fo �

corresponding in theNorth to n
�
t � τ ��� ψ 
v� v � � t � τ � vo

�
τ � , or

Q
�
t1 � t2 ��� v 
 � t1 � vo

�
t1 � t2 � v

�
t2 � , which is a dTd (diagonal-

Toeplitz-diagonal) factorization of Q
�
t1 � t2 � . The resulting

TFestimateis theweightedfrequency-averagedspectrogram

Pe
�
t � f ���

�
Γ f � v

�
f � fo � t � Γ 
g � v � f � fo � t � Vo

�
fo � d fo �

If v1

�
t ��� v2

�
t ��� T� tov

�
t � andW

�
Θ ��� vo

�
to � , then

w
�
ν � τ ���

� ∞

� ∞
Γ 
v� v � ν � τ � vo

�
to � e � j2πνto dto �

corresponding in the Southto s
�
ν � f �8� Ψ 
v� v � ν ��� f � Vo

�
ν � ,

or Q̂
�
f1 � f2 �9� V 
 � � f1 � Vo

�
f2 � f1 � V � � f2 � , which is a dTd

factorization of Q̂
�
f1 � f2 � . The resultingTF estimateis the

weightedtime-averagedspectrogram

Pe
�
t � f ���

�
Γ f � v

�
f � t � to � Γ 
g � v � f � t � to � vo

�
to � dto �

If v1

�
t �:� M fo ; 2v

�
t � , v2

�
t �8� M � fo ; 2v

�
t � , andW

�
Θ �8�

Vo
�
fo � , then

w
�
ν � τ ���

� ∞

� ∞
Γ 
v� v � ν � fo � τ � Vo

�
fo � e � j2π fo

2 τ d fo �
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corresponding in the North to n
�
t � τ �<� ψ 
v� v � � t � τ � vo

�
t �

τ
2 � , or Q

�
t1 � t2 �=� v 
 � t1 � vo

� � t1 > t2
2 � v � t2 � , which is a dHd

(diagonal-Hankel-diagonal) factorization of Q
�
t 1 � t2 � . The

resultingTF estimateis theweightedfrequency-averagedin-
terferogram

Pe
�
t � f ���

�
Γ f � v � f � fo

2
� t � Γ 
g � v � f � fo

2
� t � Vo

�
fo � d fo �

If v1

�
t ��� Tto

2
v
�
t � , v2

�
t ��� T� to

2
v
�
t � andW

�
Θ ��� vo

�
to � ,

then

w
�
ν � τ ���

� ∞

� ∞
Γ 
v� v � ν � τ � to � vo

�
to � e � j2πν to

2 dto �

corresponding in the Southto s
�
ν � f ��� Ψ 
v� v � ν ��� f � Vo

�
f �

ν
2 � , or Q̂

�
f1 � f2 �<� V 
 � � f1 � Vo

� f1 > f2
2 � V � � f2 � , which is a

dHd factorization of Q̂
�
f1 � f2 � . The resultingTF estimate

is theweightedtime-averagedWigner-Ville distribution

Pe
�
t � f ���

�
Γ f � v

�
f � t � to

2
� Γ 
g � v � f � t � to

2
� e � j2π f tovo

�
to � dto �

6. TIME-VARYING LINEAR SYSTEMS
FOUR-CORNERS DIAGRAM

Considera linear time-varying systemwith input delay-
spreadfunctionh

�
t � τ � (theNorthin Figure4), inputx

�
t � and

output y
�
t � . Theinput-outputrelationship[7] is

y
�
t ���

� ∞

� ∞
h
�
t � τ � x � t � τ � dτ (16)

in termsof theinput delay-spreadfunction, and

y
�
t ���

� ∞

� ∞
H
�
t � f � X � f � e j2π ft d f (17)

in terms of the time-varying frequency responseH
�
t � f � .

StandardFourier transformidentitiesmaybeusedto fill out
Figure 4 and write input-output equations using the input
delay-doppler spreadfunction σ

�
ν � τ � or theoutput doppler-

spreadfunctionB
�
ν � f � .

h
�
t � τ �

H
�
t � f �σ

�
ν � τ �

B
�
ν � f �

�
f � τ

�
ν � t

�
ν � t

�
f � τ

Figure4: Basicinput-outputcharacterizationsfor LTV sys-
tem.

7. WIDE-SENSE STATIONARY AND
UNCORRELATED SCATTERING CASE

WhentheWSSandUS assumptionsarecombined(yielding
theWSSUSassumption), all of thetwo-dimensionalFourier
transform relationships are reduced to one-dimensional
Fourier transform relationships [7], asillustratedin Figure5.
It is importantto notethatthequantity Pσ

�
τ � ν � in Figure5 is

commonly calledthescatteringfunction. It is alsoimportant
to notethatonly theWestcornerof Figure5,

RH

�
∆ f � ∆t ��� E

�
H
�
t � ∆t � f � H 
 � t � f � ∆ f �����

is a correlation function. The remaining cornersarepower
densities,from which singular correlations may be con-
structedby applying δ -functions. In Figure 5, the global
variables

�
τ � ν � play the samerole as

�
t � f � previously, and

thelocal variables
�
∆ f � ∆t � play thesamerole as

�
ν � τ � pre-

viously.

Ph

�
τ � ∆t �

Pσ
�
τ � ν �RH

�
∆ f � ∆t �

PB

�
∆ f � ν �

�
ν � ∆t

�
∆ f � τ

�
∆ f � τ

�
ν � ∆t

Figure5: Four-corners diagramfor WSSUScase.

8. CONNECTIONS BETWEEN TF DISTRIBUTIONS
AND SCATTERING FUNCTION ESTIMATION

WeconsideraWSSUSchannel with deterministic inputsig-
nal x

�
t � , input delay-spreadfunction h

�
t � τ � andoutput y

�
t � .

Themeanof theambiguity function for y is

E
�
Γy � y � ∆ f � ∆t ����� RH

�
∆ f � ∆t � Γx � x � ∆ f � ∆t ��� (18)

which is illustratedin Figure6. Equation(18) is the funda-
mentalresultconnectinginput ambiguity to output ambigu-
ity, through thetime-frequency correlationR H . Application
of Fourier transform propertiesproducestheremainingcor-
nersof Figure6.

Comparing Figure6 with Figure3, we find thatestima-
tion of the scatteringfunction (SF) Pσ is the sameasesti-
mationof the TF distribution except for the change in de-
sign rules: for TF we designe

�
t � f � to estimateTF proper-

tiesof signalx
� ) � ( f � g � x in Figure3); for SFwe design

transmittedsignal x to estimatePσ . For TF we are trying
to smoothwhereasfor SF we aretrying to differentiate; or
convolve for TF vs.deconvolve for SF.

Gaarder[2] proposeda two-stagetranslation-variantes-
timatefor thescatteringfunction usingsymmetricambiguity
functionsaswell assymmetriccorrelation functions. Here,
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�
ψx � x ( 1 Ph �

�
τ � ∆t �

�
γx � x ( Pσ � � τ � ν �E

�
Γy � y � ∆ f � ∆t �/��� �

Γx � xRH � � ∆ f � ∆t �

�
Ψx � x ( 2 PB � � ∆ f � ν �

�
ν � ∆t

�
∆ f � τ

�
∆ f � τ

�
ν � ∆t

Figure6: Rihaczek-basedfour-cornersdiagramfor SFesti-
mation.

we highlight a translation-invariant versionof Gaarder’s es-
timatewith thenotational conventions of thecurrentpaper.
Stage1 computesin theEast

e
�
τ � ν ����?Γy � h1

�
τ � ν �@? 2 �

which correspondsin theWest(with theaid of theSussman
identity) to

w
�
∆ f � ∆t ��� �

Γy � y ) Γ 
h1 � h1
� � ∆ f � ∆t ���

Stage2 addsa multiplication in the Westby h2

�
∆ f � ∆t � to

obtain

p̂σ
�
∆ f � ∆t ��� �

h2 ) Γ 
h1 � h1
) Γy � y � � ∆ f � ∆t ���

corresponding in theEastto thescatteringfunction estimate

P̂σ
�
τ � ν ��� �

H2 (8? Γy � h1

�
τ � ν �A? 2 � � τ � ν ���

or
P̂σ
�
τ � ν ��� �

Heq ( γyy � � τ � ν ���
where

heq
�
∆ f � ∆t ��� �

h2 ) Γ 
h1 � h1
� � ∆ f � ∆t ���

We easilyfind that

E
�
p̂σ
�
∆ f � ∆t �/��� �

heq ) Γxx ) RH � � ∆ f � ∆t ���
or (letting r

�
∆ f � ∆t ��� �

heq ) Γxx � � ∆ f � ∆t � )
E
�
P̂σ
�
τ � ν ����� �

R ( Pσ � � τ � ν ���
9. CONCLUSION

Wehavepresentedaunifiedtreatmentof TFDestimationand
SF estimationusing a Rihaczekfoundation. Four-corners
diagrams areusedto summarizekey relationships. A fun-
damental key to the performance analysisof TFD and SF
estimatesis theSussmanfour-corners diagram.
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The Sussman, Moyal, and Janssen Formulas are
Fourier Transform Consequences of a More

Fundamental Identity

David C. Farden, Member, IEEE,
and Louis L. Scharf, Fellow, IEEE

Abstract— Janssen’s formula is a sampled-data version of Moyal’s, and
both follow from Sussman’s identity, which itself is a consequence of a
more fundamental convolution identity.

Index Terms— Sussman, Moyal, Janssen identities.

I. CONNECTIONS

Let ψfg(t, τ ) = f(t+ τ )g∗(t) and define the adjoint ψ̃fg(t, τ ) =
ψ∗

fg(−t, τ ). The fundamental convolution identity we shall exploit is
this [1]:

(ψfg ∗1 ψ̃yx)(t, τ ) = (ψfy ∗1 ψ̃gx)(τ, t), (1)

where ∗1 denotes convolution with respect to the first variable. The
proof of (1) is a simple exercise in convolution. Note the swapping
of g with y, and t with τ .

Define the ambiguity function

Γfg(ν, τ ) = Fν,tψfg(t, τ ) =

∫
∞

−∞

f(t+ τ )g∗(t)e−j2πνt
dt,

and note that Fν,tψ̃fg(t, τ ) = Γ∗

fg(ν, τ ). Now Fourier transform the
LHS of (1) from t to ν, and the RHS from τ to f . Noting that each
of these Fourier transforms is with respect to the first variable, the
Fourier transform identities of Fig. 1 are readily obtained. In Fig. 1
we have defined Ψfg(ν, f) = Ff,τΓfg(ν, τ ), and Ψ̃fg(ν, f) =
Ψ∗

fg(ν,−f).

(ψfg ∗1 ψ̃yx)(t, τ ) = (ψfy ∗1 ψ̃gx)(τ, t)

(ΓfyΓ∗

gx)(f, t)(ΓfgΓ
∗

yx)(ν, τ )

(Ψfg ∗2 Ψ̃yx)(ν, f) = (Ψfy ∗2 Ψ̃gx)(f, ν)

Ff,τ

Fν,t

Fν,t

Ff,τ

Fig. 1. Sussman four-corners diagram.

The two-dimensional Fourier transform pair

(ΓfgΓ
∗

yx)(ν, τ ) ⇐⇒ (ΓfyΓ∗

gx)(f, t), (2)

known as the Sussman identity [2], follows from the fundamental
convolution equality (1), together with the two one-dimensional
Fourier transforms that separate the West and the East corners of
Fig. 1 by a two-dimensional Fourier transform.

Now integrate the LHS of the Sussman identity (2), over (ν, τ ),
and denote it by the inner product notation 〈Γfg,Γyx〉, to find

〈Γfg,Γyx〉 = (ΓfyΓ∗

gx)(0, 0),

which is just an initial value theorem of Fourier analysis. Then note
that Γfy(0, 0) = 〈f, y〉, meaning

〈Γfg,Γyx〉 = 〈f, y〉〈g, x〉∗. (3)

D. Farden is with North Dakota State University, and L. Scharf is with
Colorado State University.

This is Moyal’s identity [3]. Thus Moyal’s identity is a consequence
of Sussman’s identity, which in turn is a Fourier transform version
of the more fundamental identity (1).

The sampled-data version of Sussman’s identity is, by Poisson’s
sum formula,

(ΓfgΓ
∗

yx)(mF, nT ) ⇐⇒
1

FT

∑
k,`

(ΓfyΓ∗

gx)(f +
k

T
, t+

`

F
). (4)

Invoke an initial-value theorem to write the sampled data version of
Moyal’s formula as∑

m,n

(ΓfgΓ
∗

yx)(mF,nT ) =
1

FT

∑
k,`

(ΓfyΓ∗

gx)(
k

T
,
`

F
),

or, in terms of discrete inner-products, as

〈Γfg,Γyx〉 =
1

FT
〈Γfy,Γgx〉. (5)

This actually a generalized version of Janssen’s formula [4]. That is,
when gν,τ (t) = g(t − τ )ej2πνt, then Γfg(ν, τ ) = 〈f, gν,τ 〉e

j2πντ ,
and we may write the sampled-data version of Moyal’s formula (5)
as∑

m,n

〈f, gmF,nT 〉〈y, xmF,nT 〉
∗ =

1

FT

∑
k,`

〈f, y k

T
, `

F

〉〈g, x k

T
, `

F

〉∗,

(6)
which is the usual form of Janssen’s identity [4].

II. CONCLUSION

Thus, the equivalent fundamental identities are (1) and (2), the
latter called Sussman’s identity, with Moyal’s formula (3) following
from an initial value theorem of Fourier analysis, and Janssen’s
equality (6) following from Poisson’s sum formula and an initial
value theorem. That is, Janssen’s formula is a sampled-data version
of Moyal’s, and both follow from Sussman’s identity, which itself is
a consequence of the fundamental identity (1).
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Introduction

The purpose of the ISP Program �Integrated Sensing and Processing� is to develop sys
tems for optimal adaptive cooperation among distributed sensors and a global processing unit
�GPU�� This cooperation will adapt the amount of computation�processing done at local sen
sors� the communication bandwidth to the GPU� and the amount of computation�processing
done at the GPU�

As discussed at the June �		� ISP Kicko� Meeting� one important research component
is the estimation of channel statistics� A prerequisite of this is a channel model� Hence�
Section � of this report is devoted to the discussion of a multipathDoppler channel model
as would be encountered in a wireless environment� This is the timevarying communication
environment over which the distributed sensors and GPU must communicate�

The GPU will be receiving signals from many sensors at the same time� and it will be
necessary to isolate the signal from the desired sensor� Four di�erent models for the channel
seen by the desired user and the channels seen by interfering users are discussed in Section ��
Our contribution here is to show that� even when the interference is in
nite dimensional�
the analysis of case � can be reduced to case �� and the analysis of case � can be reduced to
case ��

Section � is concerned with the blind estimation of the interferencefree signal subspace�
which naturally arises in the zeroforcing detector of subspace signals in subspace interference
and noise� This section extends known 
nitedimensional results to the in
nitedimensional
case�

In the preceding sections� no assumption was made about the signaling waveforms of the
desired user� Section � shows how to design these waveforms to maximize the average mutual
information between the channel coe�cients and the received waveform� It is shown that
the optimum waveforms depend only on the covariance matrix of the channel coe�cients�

Section � looks at GPU design when each sensor can transit only one bit of infor
mation about its measurement� This section also considers an approach to GPU design
when each sensor is allowed to send a multibit word of information about its measurement�
Further research along these lines should allow for an adaptive system in which the sens
ing�computation of the local sensors� the information they transmit to the GPU� and the
processing at the GPU are adjusted based on timevarying channel capacity�
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� ����
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�� Multipath�Doppler Channel Models

To exploit the matched subspace detectors of ���� ���� we 
rst give a concise derivation of
the multipathDoppler model of ��� in Section ���� Then in Section ��� we discuss orthogonal
projections onto the multipathDoppler subspace� Interestingly� the quantities appearing in
the normal equations can be expressed in terms of the ambiguity function of the transmitted
waveform and the crossambiguity function of the received waveform and the transmitted
waveform� In Section ���� an alternative derivation yields a di�erent model parameterization�

�
�
 First Derivation

In this section we 
rst derive a sampling theorem for the output of a linear� time
varying system when�

�� The input is bandlimited to W �
�� The output is of interest only during the 
nite time interval �	� T ��

The second step is to show that if the channel causal and has 
nite multipath spread �m and

nite Doppler spread Bd� then the in
nite series of our sampling theorem can be truncated
with negligible error�

Consider a timevarying� linear channel model of the form

y�t� �
Z
h�t� � �x�t� � � d�� �����

Writing this convolution as the inverse transform of the transforms� we have

y�t� �
Z
H�t� f�X�f�ej��ft df�

where H is the time�varying transfer function

H�t� f� ��
Z
h�t� � �e�j��f� d��

and
X�f� ��

Z
x�� �e�j��f� d��

If we now use the fact that the signal x is bandlimited to W and that we are interested in
y�t� only for 	 � t � T � then

y�t� �
Z W

�W
H�t� f�X�f�ej��ft df� 	 � t � T� �����

Since the foregoing expression involves H�t� f� for �t� f� � �	� T �� ��W�W �� we can expand
H in the bivariate Fourier series

H�t� f� �
X
k

X
�

Hk�� e
j��kt�Te�j���f��W �

Substituting this expansion into ����� yields� for 	 � t � T �

y�t� �
X
k

X
�

Hk�� e
j��kt�T

Z W

�W
X�f�ej��f�t����W  df

�
X
k

X
�

Hk�� e
j��kt�Tx�t� ���W �� �����

October 
� ����
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To complete the sampling theorem� we now analyze the formulas for the coe�cients Hk�� �
Write

Hk�� �
�

�WT

Z T

�

Z W

�W
H�t� f�e�j��kt�T ej���f��W df dt

�
�

�WT

Z �

��

Z �

��
I���T ��t�I��W�W ��f�H�t� f�e�j��kt�T ej���f��W df dt�

Here I���T ��t� is the indicator function of the set �	� T �� i�e�� I���T ��t� � � for t � �	� T � and is
zero otherwise� We regard each integral as the transform or inverse transform of a product�
Thus�

Hk�� �
�

T

Z �

��
I���T ��t�e

�j��kt�T
Z �

��
h�t� � � sinc

�
�W

h �

�W
� �

i�
d� dt �����

�
Z �

��
sinc

�
�W

h �

�W
� �

i� Z �

��
C��� � � sinc

�
T
h k
T
� �

i�
e�j�T �k�T�� d� d�� �����

where
C��� � � ��

Z
h�t� � �e�j���t dt �����

is called the scattering function� Notice that if W and T are both large� then the sinc
functions act like impulses� and

Hk�� �
C�k�T� ���W �

�WT
�

Hence� we call the Hk�� the scattering coe�cients�
We now impose further assumptions� If the system in ����� is causal� then h�t� � � � 	 for

� � 	� and so

y�t� �
Z �

�
h�t� � �x�t� � � d�� �����

If the system�s response to an impulse at time t� is 
nite duration� e�g�� zero for t � t�� �m�
then

h�t� � � � 	� for � � �m�

and ����� becomes

y�t� �
Z �m

�
h�t� � �x�t� � � d��

Furthermore� the inner integral in ����� becomesZ �m

�
h�t� � � sinc

�
�W

h �

�W
� �

i�
d��

which is approximately zero	 for � � �� and for � � �W�m � �� Taking L �� d�W�me� we
have Hk�� � 	 for � � 	 and � � L� We next assume that the channel has 
nite Doppler
spread Bd� i�e��

C��� � � � 	� for j�j � Bd�

�The convolution is signi�cant when the main lobe of the sinc is touching ��� T ��

October 
� ����
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Then the inner integral in ����� becomesZ Bd

�Bd

C��� � � sinc
�
T
h k
T
� �

i�
e�j�T �k�T�� d��

This convolution is approximately zero for jkj � BdT � �� We therefore put M �� dBdT e so
that Hk�� � 	 for jkj � M � We now have the approximation of ������

y�t� �
MX

k��M

LX
���

Hk�� e
j��kt�Tx�t� ���W �� 	 � t � T�

The importance of this representation is that the only unknowns are the scattering coe�cients
Hk��� The values of M � L� T � and W are known� This is to be compared with the usual
representation

y�t� �
X
k

X
�

Hk�� e
j���ktx�t� ���� 	 � t � T�

where the Doppler frequencies �k and delays �� are also unknown� Note� however� that the
number of terms k and � in this representation will typically be less than �M �� and L���
respectively� In other words� the linear model reduces complexity by increasing the number
of coe�cients�

�
�
 Projections onto the Signal Subspace

Based on the foregoing analysis� when the bandlimited waveform x is sent over the
multipathDoppler channel� we model the received waveform by

y�t� �
MX

k��M

LX
���

Hk�� e
j��kt�Tx�t� ���W � � n�t�� 	 � t � T�

where n�t� is noise� Consider the problem of projecting y onto the subspace

S �� spanfsk����M � k �M� 	 � � � Lg�

where
sk���t� �� ej��kt�Tx�t� ���W �� 	 � t � T�

The usual orthogonalityprinciple argument ��� x���� says that the projection by is given by

by�t� �
MX

k��M

LX
���

cHk�� sk���t��

where the coe�cients cHk�� solve the normal equations� The entries of the Gram matrix are
given by hsk��� sk����i� and the components of the �other side� of the normal equations are
given by

hy� sk����i �
Z
y�t�sk�����t�

� dt

�
Z
y�t�e�j��k

�t�Tx�t� ����W �� dt

�
Z
y�� � ����W �x����e�j��k

��������W �T d�

� e�j��k
�����WTAyx�k

��T� ����W ��

October 
� ����
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where the � indicates complex conjugation� and Ayx is the cross�ambiguity function�

Ayx��� � � ��
Z
y�t� � �x�t��e�j���t dt�

In the foregoing� it is understood that y�t� � 	 for t outside �	� T �� The entries of the Gram
matrix are

hsk��� sk����i �
Z
ej��kt�Tx�t� ���W �e�j��k

�t�Tx�t� ����W �� dt�

where the range of integration is �	� T �� If the temporal support of all the x�t � ���W � is
essentially contained in �	� T �� we can write�

hsk��� sk����i �
Z
x�� � ��� � ����W �x����ej���k�k

���������W �T d�

� e�j���k
��k�����WT

Z
x�� � ��� � ����W �x����e�j���k

��k���T d� �����

� e�j���k
��k�����WTAxx��k

� � k��T� ��� � ����W ��

If the assumption about the temporal support of the x�t � ���W � is not valid� then the
integral in ����� is replaced byZ T�����W

�����W
x�� � ��� � ����W �x����e�j���k

��k���T d��

�
�
 Derivation of the Second Model

The derivation in Section ��� was based on the bivariate Fourier expansion of H�t� f�
followed by the 
nite multipath delay and 
nite Doppler spread assumptions� Alternatively�
we can rewrite ����� in terms of C��� � � de
ned in ������ Thus�

y�t� �
Z � Z

C��� � �ej���t d�
�
x�t� � � d��

If we now assume that the system is causal with 
nite multipath spread �m and 
nite Doppler
spread Bd� we have

y�t� �
Z �m

�

� Z Bd

�Bd

C��� � �ej���t d�
�
x�t� � � d�� �����

This time we expand C��� � � in a bivariate Fourier series on ��Bd� Bd�� �	� �m�� Substituting

C��� � � �
X
�

X
k

C��k e
�j������Bdej��k���m

into ����� yields

y�t� �
X
�

X
k

C��k

Z �m

�

� Z Bd

�Bd
ej����t����Bd d�

�
x�t� � �ej��k���m d�

� �Bd

X
�

X
k

C��k sinc
�
�Bd

h
t�

�

�Bd

i� Z �m

�
x�t� � �ej��k���m d��

�Since the nonzero waveform x is bandlimited� it cannot be time limited�
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In this last integral� substitute

x�t� � � �
Z
X�f�ej��f�t�� df

to get

y�t� � �Bd�m
X
�

X
k

C��k sinc
�
�Bd

h
t�

�

�Bd

i�
�
Z
X�f�e�j��m�f�k��m sinc��m�f � k��m��e

j��ft df

� �Bd�m
X
�

X
k

C��k ����k sinc
�
�Bd

h
t�

�

�Bd

i�
����	�

�
Z
X�f� sinc��m�f � k��m��e

j��f�t��m�� df�

For �m large� the last sinc function acts like a delta function and so

y�t� � �Bd

X
�

X
k

C��k ����k sinc
�
�Bd

h
t�

�

�Bd

i�
X�k��m�e

j���k��m�t��m��

� �Bd

X
�

X
k

C��k sinc
�
�Bd

h
t�

�

�Bd

i�
X�k��m�e

j��kt��m�

We now turn to the coe�cients C��k� Write

C��k �
�

�Bd�m

Z �m

�

Z Bd

�Bd

C��� � �ej������Bde�j��k���m d� d�

�
�

�Bd�m

Z �m

�

� Z
I��Bd�Bd����C��� � �ej������Bd d�

�
e�j��k���m d�

�
�

�m

Z �m

�

� Z
sinc

�
�Bd

h �

�Bd
� t

i�
h�t� � � dt

�
e�j��k���m d�

�
Z

sinc
�
�Bd

h �

�Bd
� t

i�� �

�m

Z
I����m��� �h�t� � �e

�j��k���m d�
�
dt

�
Z

sinc
�
�Bd

h �

�Bd
� t

i�� Z
H�t� f� sinc

�
�m
h k
�m

� f
i�
e�j��m�k��m�f df

�
dt� ������

Notice that for large �m and Bd� the sinc functions act like impulses� and so

C��k �
H����Bd� k��m�

�Bd�m
�

For this reason� we call theC��k the channel coe�cients� If we assume that the timevarying
transfer function is bandlimited to W � then ������ tells us that C��k � 	 for jkj � dW�me�
Similarly� if we restrict t to �	� T � in ����	�� we see that for � � 	 and � � d�BdT e� C��k � 	�
Thus� we can approximate y�t� by using 
nite sums in ����	�� So far� we do not see how to
exploit this representation�
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�� Subspace Signals in Subspace Interference and Noise

Consider a receiver whose input is

y � a� b� n�

where a is the desired signal� b is an interference signal� and n is white noise� It is assumed
that a belongs to a 
nitedimensional subspace A and b belongs to a subspace B� which may
be in
nite dimensional� There are four �Gaussian� cases to consider ��	��

�� a and b are deterministic but unknown�
�� a is deterministic and unknown� but b is random and independent of n�
�� b is deterministic and unknown� but a is random and independent of n�
�� a and b are random with a� b� and n independent�

According to ��	� p� ������ all except case � have been discussed at length in the literature
when a� b� and n are 
nitedimensional vectors in jCn� Case � �for 
nitedimensional vectors�
is treated in ��	� Section IVC�� Here we 
rst generalize by allowing the interference to lie in
an in
nitedimensional subspace� We then show that case � can be transformed into case �
with no interference term� and we show that case � can be transformed into case � with no
interference term� Hence� once we know how to solve cases � and �� those solutions can be
used to solve cases � and �� respectively� The importance of these transformation is that
case � is well understood� and case � has recently been solved for constraints on a and with
B being in
nite dimensional ����

�
�
 Model Details

We take a to be of the form

a � Au ��
pX

k�	

ukak�

where a	� � � � � ap are linearly independent� Thus� a lives in the 
nitedimensional subspace

A �� spanfa	� � � � � apg�

and u �� �u	� � � � � up�� is either deterministic and unknown or random with zero mean and
covariance matrix Ru� When b is deterministic� it is allowed to lie� for example� in a closed�
in
nite dimensional subspace B of L��	� T �� When b is a zeromean random process with
covariance function rb�t	� t��� the process is assumed to have a Karhunen�Lo�eve expansion�
e�g��

b�t� �
�X
k�	

Bksk�t��

where

Bk �
Z T

�
b�t�sk�t�

� dt� �����

the sk are orthonormal� the Bk are independent� and
R T
� rb�t� � �sk�� � d� � 	ksk�t�� Here we

take
B � spanfskg�k�	�
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We have recently solved case � for in
nitedimensionalB in ���� In case �� linear estimation
of a �or u� is a standard Wiener
lter problem� If Karhunen�Lo�eve expansions are valid�
then detection is also straightforward� We next show that case � can be reduced to a special
version of case � in which B is the zero subspace� Similarly� we show that case � can be
reduced to a special version of case � in which there is no interference�

�
�
 Reduction of Case � to Case �

The 
rst step is to write y � a� b� n as y � a� w� where w �� b� n� The covariance
function of w is

rw�t	� t�� � rb�t	� t�� � 
���t	� t���

where � is the Dirac delta function� The corresponding covariance operator isRw �� Rb�
�I�
where I is the identity operator� and

�Rbx��t� ��
Z T

�
rb�t� � �x�� � d��

The basic idea is that observing y is equivalent to observing

�y �� R�	��
w y � �a� �n�

where �a �� R�	��
w a and �n �� R�	��

w w� Since �n is white noise� and since �a � �Au� where
�A �� R�	��

w A� we see that �y � �Au� �n is exactly case � with no interference�
It remains to check a few details such as the existence of R�	��

w and the fact that �n is
white noise�

To 
nd determine R�	��
w � we proceed as follows� Assuming thatZ T

�

Z T

�
jrb�t� � �j

� dt d� � ��

it follows that Rb is a compact operator ��� pp� �������� By the spectral theorem for compact�
selfadjoint operators ��� p� ����� Rb has the representation

Rbx �
�X
k�	

	khx� skisk�

where the 	k are positive� nonincreasing eigenvalues with corresponding orthonormal eigen
vectors sk� i�e�� Rbsk � 	ksk� Furthermore� we have the orthogonal direct sum decomposition
��� p� ����

L��	� T � � kerRb 	 B�

where B was de
ned above� For x � L��	� T �� we can always write x � �x�  x� where �x is the
projection of x onto kerRb� and

 x �
�X
k�	

hx� skisk

�To guarantee the existence of the Karhunen�Lo�eve expansion� we need rb to be continuous� Note that
continuity of rb is enough to make Rb compact� Continuity of rb is assured if we assume b�t	 is mean
square
continuous�
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is the projection of x onto B� Thus�

Rwx � �
�I �Rb�x

� 
�x�
�X
k�	

	khx� skisk �����

� 
���x�  x� �
�X
k�	

	khx� skisk

� 
��x�
�X
k�	

�
� � 	k�hx� skisk�

This suggests that

R	��
w x �� 
�x�

�X
k�	

�
� � 	k�
	��hx� skisk �����

should be selfadjoint and satisfy R	��
w �R	��

w x� � Rwx� This is easily checked to be the case�
Next� it is an easy exercise to check that

R�	
w y � 
��y �

�X
k�	

�	k�
�


� � 	k
hy� skisk�

Then� just as ����� led to ������ we easily 
nd that

R�	��
w y � 
�	�y �

�X
k�	

�
� � 	k�
�	��hy� skisk� �����

where �y is the projection of y onto kerRb�
It remains to show that �n �� R�	��

w w is white noise� Write

�n�t� � 
�	 �w�t� �
�X
k�	

�
� � 	k�
�	��hw� skisk�t�

� 
�	�n�t� �
�X
k�	

�
� � 	k�
�	���Bk �Nk�sk�t��

where Bk was de
ned in ������ Nk is de
ned similarly� and

�n�t� � n�t��
�X
k�	

Nksk�t��

Using the formula

E��n�t	��n�t��
�� � 
���t	� t��� 
�

�X
k�	

sk�t	�sk�t��
�

along with E�BkN
�
l � � 	� E�BkB

�
l � � 	k�kl� and E�NkN

�
l � � 
��kl� it is straightforward to

verify that E��n�t	��n�t���� � ��t	 � t��� Hence� �n is white noise�
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�
�
 Reduction of Case � to Case �

Let PBa denote the projection of a onto B� and let P�
B a denote the projection of a onto

B�� Then y � a� b� n can be written as

y � P�
B a� b� n�

where  b �� PBa� b� In case �� b is an unknown element of B� and so our model is equivalent
to

y � P�
B a� b� n�

where b is just another unknown element of B� Put G �� P�
B �A�� Since G 
 B�� PGb � 	�

Since a � A� P�
B a � G� and so PGP�

B a � P�
B a� Hence�

z �� PGy � P�
B a� v�

where v �� PGn� Notice that z and y � z � b � P�
G n are uncorrelated and therefore

independent� Also� y� z is independent of a and of v� Hence� there is no loss of information
about a if we work with z instead of y� To conclude� note that since A is 
nite dimensional�
so is G� Hence� instead of working with z� we can work with its coordinate vector relative to
some orthonormal basis of G� Denote this coordinate vector by z and similarly for v� Since
the covariance matrix of v is 
�I� z is a version of case ��

Remark
 If n is Gaussian� and if whenever a and�or b are random they are also Gaussian�
then since all transformations here are linear� Gaussianity is preserved�
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�� Blind Identi�cation of the Interference�Free Signal Subspace

and the Signal Coe�cient Covariance

Consider a signal detection problem in which the received waveform is

y�t� � a�t� � b�t� � n�t�� 	 � t � T�

where a is the random signal to be detected� b is a random interference process� and n is a
white noise process� If a belongs to a subspace A� and b belongs to a subspace B� then a key
step in designing suboptimal linear detectors for CDMA systems ����� and more generally�
matched subspace detectors ���� ���� is the characterization of the subspace P�

B �A� that results
from projecting the elements of A onto the orthogonal complement of B� The problem of

nding P�

B �A� when B is unknown was studied by Scharf and McCloud ��	� when a� b� and
n were 
nitedimensional random vectors� Here we allow a� b� and n to be waveforms� and
we speci
cally allow B to be in
nite dimensional�

�
�
 System Model

We assume that the signal is of the form

a�t� � �Au��t� ��
pX

k�	

ukak�t�� �����

where a	� � � � � ap are linearly independent waveforms in L��	� T �� and u �� �u	� � � � � up�� is a
random vector in jCp� In other words� the operator A takes the random column vector u and
returns the random waveform Au� which lives in the pdimensional subspace of waveforms

A �� spanfa	� � � � � apg�

For the random subspace signal a�t�� its covariance function is easily seen to be

ra�t	� t�� �� E�a�t	�a�t��
�� �

pX
k�	

pX
��	

�Ru�k�� ak�t	�a��t��
��

where Ru is the covariance matrix of the random vector u� The covariance operator corre
sponding to the covariance function ra is

�Rax��t� ��
Z T

�
ra�t� � �x�� � d�� 	 � t � T�

A simple calculation shows that
Rax � ARuA

�x� �����

where the adjoint operator A��L��	� T �� jCp is given by

A�x �

����
hx� a	i

���
hx� api

���	 �
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and h� � �i denotes the standard inner product on L��	� T ��

hx� ai ��
Z T

�
x�t�a�t�� dt�

We assume that Ru is invertible�
Suppose that the interference b is a secondorder process with covariance function rb�t	� t�� ��

E�b�t	�b�t���� and corresponding covariance operator

�Rbx��t� ��
Z T

�
rb�t� � �x�� � d�� 	 � t � T�

It is easy to see that Rb is self adjoint� Next� ifZ T

�

Z T

�
jrb�t� � �j

� dt d� � ��

thenRb is compact ��� pp� ������� By the spectral theorem for compact� selfadjoint operators
��� p� ����� Rb has the representation

Rbx �
�X
k�	

	khx� skisk�

where the 	k are positive� nonincreasing eigenvalues with corresponding orthonormal eigen
vectors sk� i�e�� Rbsk � 	ksk� Furthermore� we have the orthogonal direct sum decomposition
��� p� ����

L��	� T � � kerRb 	 B� �����

where
B �� spanfskg�

and the overbar denotes the closure�
If b is in fact zeromean� meansquare continuous� then b has the Karhunen�Lo�eve ex

pansion

b�t� �
�X
k�	

Bksk�t��

where

Bk �
Z T

�
b�t�sk�t�

� dt�

However� this is more than we need� All we really need is ������

�
�
 Identi�cation of P�
B �A�

An important quantity in the design of matched subspace detectors is the subspace

G �� P�
B �A� � spanfP�

B a	� � � � � P
�
B apg� �����

where P�
B is the projection onto the orthogonal complement of B� We assume A � B � f	g

�the zero subspace�� this condition is necessary and su�cient to guarantee that the P�
B ak are

linearly independent� and hence that dimG � p� How can we 
nd G if we do not know B!
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Let us suppose that we can estimate the covariance function ry�t	� t�� from observed data�
Assume that we know the ak� 
�� and that a� b� and n are uncorrelated� Then

Ry � Ra �Rb � 
�I�

Put
R �� Ra �Rb � Ry � 
�I�

Then we know R�

Theorem �
�
 The operator R�L��	� T � � L��	� T � maps the subspace G one�to�one and

onto the subspace A� Furthermore� G � R��A�� where R� denotes the pseudoinverse of R��

It then follows that

G � spanfR�a	� � � � � R
�apg�

Remark
 The point here is that by knowing the covariance function ry�t� � �� the noise
variance 
�� and the basis waveforms ak in ������ we can obtain a basis for G� Having a basis
for G� we can project any waveform onto it by solving the appropriate matrixcolumnvector
normal equations� It is not necessary to know B�

Proof of Theorem ���� We 
rst show that for g � G� Rg � A� Since Rg � Rag � Rbg� and
since for all x� Rax � A� it su�ces to show that Rbg � 	� Now� g � G 
 B�� It follows
from the orthogonal decomposition ����� that B� � kerRb� thus� for g � G� Rbg � 	� Hence�
Rg � Rag � A as claimed�

Since dimG � dimA ��� if we can prove R is onetoone on G� then by ��� p� ��� Th� ���
it follows that R maps G onto A� We proceed as follows to show R is onetoone on G� For
u� v � jCp� put g	 � P�

B Au and g� � P�
B Av� and suppose Rg	 � Rg�� As just noted� this

implies Rag	 � Rag�� Using ������ we have

ARu�A
�P�

B A�u � ARu�A
�P�

B A�v�

Since A is onetoone and Ru is assumed invertible� we have

�A�P�
B A�u � �A�P�

B A�v�

Since A�P�
B A � �P�

B A�
��P�

B A�� and since the P�
B ak are linearly independent� P�

B A is one
toone� and then so is
 �P�

B A�
��P�

B A�� Thus� u � v and then g	 � g��
Since R maps G onetoone and onto A� there is an inverse map from A onto G� i�e�� for

every g � G there is exactly one a � A such that Rg � a� If g � �kerR��� then g � R�a�
We now show that if g � P�

B Au for some u� then g is orthogonal to kerR�

�For a bounded operator R� the domain of R� is the set of all y � L���� T � such that the projection of y
onto the range of R exists� Denoting this projection by by� R�y is de�ned to be the minimum
norm solution
of Rx � by� By de�nition of by� it is in the range of R� and so there is at least one solution x� such that
Rx� � by� Since R is a bounded operator� kerR is closed� Since L���� T � is complete� the projection theorem
��� x�� shows that L���� T � � kerR� �kerR	�� It is then easily seen that the projection of x� onto �kerR	�

is the unique� minimum
norm solution� We shall be concerned with the case in which y is already in the
range of R so that by � y� For such y� R�y is de�ned�

�Use the easily veri�ed fact that for any operator D with adjoint D�� kerD � kerD�D�
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Fix any x � kerR so that Rx � 	� Then Rax � �Rbx is an element of A � B � f	g�
Thus� Rax � Rbx � 	� In particular� Rbx � 	 implies x � B�� Now write

hg� xi � hP�
B Au� xi � hAu�P�

B xi � hAu� xi � hu�A�xi�

which equals zero because 	 � Rax � ARuA
�x implies A�x � 	 on account of the linear

independence of the ak and the invertibility of Ru� Thus� G 
 �kerR��� �

We now turn to the problem of 
nding Ru�

Theorem �
�
 The covariance matrix Ru can be obtained via

Ru � �A�R�A��	�

Proof� It su�ces to show that A�R�ARu � I� which we do by showing that A�R�ARuv � v
for arbitrary v � jCp� Given v � jCp� ARuv � A� By Theorem ���� R�ARuv � G� Hence�

R�ARuv � P�
B Au� for some u � jCp� �����

From the de
nition of pseudoinverse� RP�
B Au is equal to the projection of ARuv onto the

range of R� Since ARuv � A� which� by Theorem ���� is a subset of the range of R�
RP�

B Au � ARuv� Now write

ARuv � RP�
B Au

� RaP
�
B Au

� ARuA
�P�

B Au�

Since A is onetoone� and since Ru is assumed invertible� v � A�P�
B Au� Using ������ write

A�R�ARuv � A�P�
B Au � v� �
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�� Waveform Sets with Maximum Mutual Information

Consider the received waveform

y�t� � �Au��t� � n�t��

where

�Au��t� ��
pX

k�	

ukak�t�� �����

We assume that the waveforms ak are linearly independent and that u �� �u	� � � � � up�� is
N�	� Ruu� �Ruu positive de
nite� and independent of the zeromean� white Gaussian noise
n�t� with power spectral density Sn�f�  
�� Our goal is to choose the waveforms ak so as to
maximize the average mutual information between u and y� denoted by I�u � y�� The idea
is to choose waveforms ak so that the received waveform y provides as much information as
possible about the weights uk�

Direct evaluation of I�u�y� is complicated by the fact that u is a column vector and y is
a continuoustime random process� In Section ���� we show that I�u� y� � I�u� v� where v
is a column vector related to y� It will be seen that u and v are jointly Gaussian� Hence� the
joint distribution of u and v is completely determined by the covariance matrices Ruu and
Rvv and the crosscovariance matrix Ruv� In Section ���� Ruv and Rvv are obtained� Then
I�u� v� is expressed in terms of known quantities in Section ���� Finally� in Section ���� the
optimization problem is formulated and solved in closed form�

�
�
 Reduction to a Finite�Dimensional Problem

Let A �� spanfa	� � � � � apg� and let PA denote the projection operator onto A� Since
y � Au� n� where Au � A� we have

by �� PAy � Au� PAn

and ey �� y � by � n� PAn � P�
A n�

where P�
A denotes the projection onto A�� the orthogonal complement of A� Since by and ey

are uncorrelated and jointly Gaussian� they are independent�
Using the fact that the mapping y �� �by� ey � is invertible� along with a standard identity�

we have
I�u � y� � I�u � �by� ey �� � I�u � by � � I�u � ey jby ��

To see that this last term is zero� observe that

I�u � ey jby � � H�ey jby ��H�ey jby� u�
� H�ey ��H�ey �� by independence�

� 	�

Thus�
I�u � y� � I�u � by �� �����
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We next show that the waveform by is equivalent to the column vector

A�y �

����
hy� a	i

���
hy� api

���	 �
where h� � �i denotes the inner product�

hy� ai ��
Z
y�t�a�t�� dt�

By equivalent we mean that by can be obtained as a function of A�y and A�y can be obtained
as a function of by� To see this� 
rst recall that PA � A�A�A��	A� ��� pp� ��	������ Thus�by � PAy is a function of A�y� Conversely�

A�by � A�A�A�A��	A�y � A�y�

Since by and A�y are equivalent�

I�u � by � � I�u �A�y�� �����

To conclude this section� we de
ne v in terms of A�y by the invertible transformation

v �� �A�A��	��A�y�

Hence� I�u�A�y� � I�u� v�� Putting this together with ����� and ������ we have I�u� y� �
I�u � v� as required�

�
�
 The Joint Distribution of u and v

Observe that
v �� �A�A��	��A�y � �A�A�	��u� w�

where w �� �A�A��	��A�n is a pdimensional N�	� 
�I� random vector� In now follows that
u and v are jointly Gaussian with

Ruv � Ruu�A
�A�	�� �����

and

Rvv � �A�A�	��Ruu�A
�A�	�� � 
�I

� �A�A�	��R	��
uu �I � S�	�R	��

uu �A�A�	��� �����

where S is the SNR matrix�

S ��
R	��
uu �A�A�R	��

uu


�
� �����
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�
�
 Evaluation of the Average Mutual Information

An easy calculation� e�g�� ���� Section V�� shows that the average mutual information
between u and v is

I�u � v� �
�

�
�lndetRvv � ln detQvv��

where ���� eq� ��	��

Qvv �� Rvv �R�
uvR

�	
uuRuv

� R	��
vv �I � C �C�R	��

vv �

and
C �� R�	��

uu RuvR
�	��
vv �����

is the coherence matrix� It follows that

I�u � v� � �	
�
ln det�I � C �C� � �	

�
ln det�I � CC ���

Using ����� along with ����� and ������ it is easy to check that CC � � �I � S�	��	� Using
the matrix inversion formula ����

I � CC � � I � �I � �I � S��	� � �I � S��	�

Thus�
I�u � v� � 	

�
ln det�I � S��

�
�
 The Optimization Problem

It is instructive to consider the case in which p � � in ������ Then the SNR matrix S in
����� is the scalar SNR�

S �
Ruuka	k�


�
�

It is then clear that I�u � v� is monotonic increasing with A�A � ka	k�� Hence� in order
to have maxA I�u � v� 
nite� we must impose some kind of constraint on the energy of the
signaling waveforms�

Let
L �� R	��

uu �A�A�R	��
uu

denote the numerator in ����� so that S � L�
�� Consider the problem

max
A

	
� ln det�I � L�
�� subject to trL � E� �����

where E is a constraint on the allowable energy of the signaling waveforms� Now observe
that for any orthogonal matrix P �P �P � PP � � I�� ����� is equivalent to

max
A

	
� ln det�I � P �LP�
�� subject to tr�P �LP � � E�

Hence� if P is chosen to diagonalize L� then

P �LP � " � diag��	� � � � � �p��
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and ����� becomes

max
A

�

�

pX
k�	

ln�� � �k�

�� subject to

pX
k�	

�k � E�

where the �k are the eigenvalues of L� Using Lagrange multipliers� it is an easy exercise to
show that the optimal choices for the �k are �k � E�p for all k and that I�u�v� � �p��� ln���
E�p
��� It is easy to see that if A�A � �E�p�R�	

uu � then L � R	��
uu �A�A�R	��

uu � �E�p�I is
diagonal with all eigenvalues equal to E�p� To conclude� we observe that if  a	� � � � �  ap is
any orthonormal basis of waveforms with corresponding operator  A given as in ������ then

A ��
q
E�p  AR�	��

uu solves the problem� In other words� we should take

ak�t� �

s
E

p

pX
i�	

�R�	��
uu �ik  ai�t��

Remark
 In general� for any operator �A de
ned similarly to ������ if we take A �� �AR�	��
uu �

then
y � Au� n � �AR�	��

uu u� n�

If we put �u �� R�	��
uu u� then

y � �A�u� n�

where the covariance matrix of �u is I� In other words� we are whitening the input�

�
�
 Discussion of the Constraint in ��
�

It is rather obvious that we used the constraint

trL � tr�R	��
uu �A�A�R	��

uu � � E

to make ����� easy to solve in closed form� Here is a di�erent approach to the problem that
appears to use the more natural constraint

tr�A�A� �
pX

k�	

kakk
� � E�

Rewrite y � Au� n as
y � AR	��

uu R
�	��
uu u� n�

If we put
�A �� AR	��

uu �����

and �u �� R�	��
uu u� then we have the model y � �A�u� n� where now �u has covariance matrix

I� Since u and �u are related by an invertible transformation� I�u� y� � I��u� y�� We would
then say that there is no loss of generality in taking Ruu � I and proceed as above and
impose the apparently natural constraint tr�A�A� � E� However� this is misleading because
the foregoing A is actually �A in ������ Using ������ tr� �A� �A� � tr�R	��

uu �A�A�R	��
uu ��
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�
�
 Future Work

One obvious extension is to replace the constraint in ����� with the more natural con
straint

tr�A�A� �
pX

k�	

kakk
� � E�

However� this seems rather challenging�

In a multipath channel� the received waveform would again be y � Au � n� but now
the ak would have the form ak�t� � a�t� �k � ��T �� k � �� � � � � p� where T is proportional
to the reciprocal of the bandwidth of the basic waveform a�t�� and p is proportional to the
product of the bandwidth and the channel multipath spread as in Section �� In this case� the
foregoing analysis does not immediately apply since there is now the additional constraint
that the ak be shifts of a basic pulse a�
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�� Fusion of Decentralized Decisions

�
�
 A Preliminary� Detection with an Arbitrary Discrete Random Variable

Let Z be a discrete random variable taking N distinct values with positive probability
under each of two hypotheses� Let Z denote the set of N values taken by Z� and let

L�z� ��
�

	�Z � z�
�

��Z � z�
� z � Z� �����

denote the likelihood ratio of Z� Without loss of generality� we enumerate the elements of
Z� say z	� � � � � zN � so that

L�z	� � � � � � L�zN ��

If  � L�zk� � L�zk�	�� then the probability of false alarm is

pFA�� � �
��L�Z� � � �

NX
i�k

�
��Z � zi� �����

and

pD�� � �
	�L�Z� � � �

NX
i�k

�
	�Z � zi��

Note that pFA and pD are nonincreasing� leftcontinuous functions of � In fact� these func
tions are piecewise constant with jumps at the values  � L�zk��

�
�
 Fusion of Local Binary Decisions

Consider a collection of n decentralized sensors� each making its own binary decision
Di � 	 or � about whether the underlying hypothesis is 	 or �� At a fusion center� the
decentralized decisions are collected into the discrete random variable Z �� �D	� � � � �Dn��

taking N � �n distinct values� The centralized decision of the fusion center may then be
treated as in Section ����

�
�
 Quantization for ROC Approximation

Let Y be a random vector taking values in IRd� and let A	� � � � � AN be a partition of IRd�
Put Z � zk if Y � Ak so that Z is a discrete random variable as above� If the sets Ak satisfy
�

��Y � Ak� � #� for some small #�� then the ROC curve� which plots pD�� versus pFA���
will have points closely spaced on the horizontal axis�

As an example� consider a realvalued random variable Y with cumulative distribution
function Fi�y� � �

i�Y � y�� i � 	� �� Put #� � ��N � and for k � �� � � � � N � �� let yk
solve F��yk� � k#�� Put Ak �� �yk�	� yk�� where y� �� ��� and AN � �yN�	���� Then
�

��Z � zk� � #�� If ����� does not hold� it may be necessary to renumber the zk� In any
case� the distinct values of pFA�� in ����� will be spaced #� apart�

�
�
 Quantization for Likelihood Ratio Approximation

Let Yj be a continuousvalued measurement available at sensor j� j � �� � � � � n� Let
L�y	� � � � � yn� denote the likelihood ratio based on the joint distribution of the Yj� Assume
each sensor is equipped with a 
ne partition of intervals� If sensor j observes Yj � �aj�kj � bj�kj ��
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it transmits only the index kj� Since the fusion center cannot evaluate L�Y	� � � � � Yn�� it uses
the value

L
�a	�k� � b	�k�

�
� � � � �

an�kn � bn�kn
�

�
�

�
�
 Many Independent Sensors

Let Ak be such that

�k �� �
��Yk � Ak� � �

	�Yk � Ak� �� 	k�

Such a test is said to be unbiased� Put

Xn ��
�

n

nX
k�	

IAk�Yk��

and observe that

E��Xn� �
�

n

nX
k�	

�k �
�

n

nX
k�	

	k � E	�Xn��

If for some � � 	 and some � E��Xn� �  � � and  � � � E	�Xn� for all n� then under
reasonable conditions a suitable weak law of large numbers will hold so that

�
��Xn � � � 	 and �

	�Xn � � � ��

In other words� asymptotically� as long as each sensor doesn�t do too badly� the fusion
center can obtain arbitrarily small probability of false alarm and arbitrarily high probability
of detection� Of course� for 
nite n� we want to make E��Xn� and E	�Xn� far apart� For
example�

E	�Xn�� E��Xn� �
�

n

nX
k�	

�	k � �k��

If each �k is 
xed� then each 	k can be maximized by choosing Ak according to the Neyman�
Pearson Lemma�
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Abstract
The concept of integrating sensing with processing for general communication problems is devel-
oped. The fundamental notion of varying basic system parameters—including modulation type,
carrier frequency, bit/symbol rate, coding scheme, and so on—in a manner that is dependent on a
regular sensing of the operating environment is introduced. This notion is abstracted mathemati-
cally, resulting in a concrete model for a time-varying communication system in the presence of
a time-varying channel. The goal of the research is to find classes of high-capacity time-varying
systems that can react favorably to time-varying channels. Using the developed mathematical
abstraction as a framework and this overarching goal as a guiding principle, a sequence of math-
ematical problems is posed. The practicality of real time-varying systems that are based on the
abstraction is discussed in light of modern communication system technologies such as high-speed
DSP and software radio.
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1 Introduction

This document is a record of MRC’s ISP program effort that relates to communication systems. In
particular, a specific notion of the integration of sensing and processing (ISP) for arbitrary commu-
nication links is proposed. This notion is set against the backdrop of traditional communication-
system design philosophy and is used to develop mathematical abstractions that lead to specific
mathematical problems of ISP interest. The posing and study of these problems makes up the ISP
work related to communication systems.

The remainder of this document is organized as follows. The traditional approaches to commun-
ication-system design are briefly described in Section 2 and ISP approaches are defined in Section
3. The ISP approaches are used to develop overarching mathematical abstractions of communica-
tion systems under ISP in Section 4, and specific mathematical problems are then posed in Section
5. Section 6 addresses the gap between the mathematical problems and the engineering design of
real systems that are capable of achieving some or all of the ISP gains in throughput, robustness
to channel impairments, or error probability. Section 7 provides mathematical problem analysis,
Section 8 contains a discussion of results and some numerical examples, and concluding remarks
are provided in Section 9. Appendix A contains some relevant information-theoretic definitions
and results.

2 Conventional Communication System Design Philosophy

Conventional design approaches can be divided into the traditional approach and the modern ap-
proaches.

2.1 Traditional Approach

In the traditional approach to communication-system design, modeling and measurement are used
to characterize (perhaps incompletely) the physical channel and the source. Then each block in
the basic block diagram in Figure 1 is separately designed and optimized. A basic difficulty with
this approach is that it cannot adapt to deviations from the assumed channel model. That is, it can
neither take advantage of unusually good conditions nor defend against bad conditions that render
the nominal system completely ineffective (high error rate).

Channel
Decoder

Source
Decoder

Demodulator

Source
Coder

Channel
Coder

ModulatorSource

Dest

Channel

Figure 1: Basic communication-system block diagram.
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2.2 Modern Approaches

In more recent approaches [17]–[25], the traditional approach has been modified by allowing one
or more of the basic blocks in Figure 1 to possess an adaptive character or by combining two
or more of the blocks and treating the result as an integral subsystem to be optimized. Adaptive
equalizers are examples of the former and the most visible example of the latter is trellis-coded
modulation, arising from the combination of the channel coder and the modulator, as shown in
Figure 2.

Channel
Decoder

Source
Decoder

Source
Coder

Channel
Coder

Modulator

DemodulatorDest

Channel

Source

Trellis−Coded Modulation

Trellis−Coded Demodulation

Figure 2: Block diagram for a communication system employing trellis-coded modulation.

Another important example of the more flexible modern approach is multicarrier modulation or
OFDM. The signal can be viewed as a set of adjacent-channel digital QAM signals with identical
symbol rates. The constellation used in each subcarrier can be varied to adapt to changing channel
conditions, resulting in variable bit rate across the subchannels.

Although the modern approaches do provide means for adapting to changing channels (and
possibly to changing data-rate and quality-of-service demands), they do not go as far as possible
in integrating environment sensing with processing. In particular, many other parameters may be
adjusted to react to time-varying channels, including modulation type (not just the constellation),
coding schemes and parameters, center frequency, antenna pattern, RF bandwidth, spreading gain,
etc.

3 Integrating Sensing and Processing for Communication Sys-
tems

To integrate sensing with processing in the communication-system context, two things are required:
(1) the ability to sense one or more aspects of the environment, and (2) the ability to alter one or
more aspects of the processing in response to sensing. For our purposes, the environment is not
limited to the physical channel, but also includes possibly time-varying user demands on data rate
and error performance.

We can divide the class of ISP-enabled communication systems into those that require signifi-
cant cooperation between source and destination and those that do not. The former will be called
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cooperative ISP systems (CISPS), and the latter autonomous ISP systems AISPS. In autonomous
systems, the destination senses the environment on its own and makes its own choices for operating
parameters accordingly. No feedback between destination and source is required, as illustrated in
Figure 3. Of course, this severely limits the set of adjustable parameters.

Dest senses
environment
and adapts

Source Destination

Channel

Figure 3: Illustration of the autonomous ISP communication system concept.

In cooperative systems, the destination senses the environment with cooperation from the source
and makes choices that are communicated to the source or that must be negotiated with the source.
This requires either a logical or physical subchannel for passing side information back and forth,
as illustrated in Figure 4.

Dest senses
environment

Dest and source
jointly adapt

Source Destination

Channel

Feedback Channel

Figure 4: Illustration of the cooperative ISP communication system concept.

For all the possible ISP-enabled communication systems, we propose the following concept of
operation:

Let the set of adjustable parameters at the destination be denoted by ��� , and let the
destination perform a set of measurements each � seconds. Based on the measure-
ments, adjust one or more parameters in ��� to improve error performance and/or
increase data rate.

A major goal of this work is the development of a suitable mathematical framework for predicting
performance improvements due to the use of the proposed ISP concept of operations.

3.1 Conceptual ISP Examples

In this section we provide a few examples of the ISP system concepts to fix the autonomous and
cooperative notions.

Simple Autonomous Parameter Adjustment.
In this first example, the destination senses the environment and makes decisions regarding the
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best parameter adjustment but does not communicate the adjustment to the source. The destination
senses the channel by adjusting its position in space and measuring the quality of the communica-
tion for the new position. Since each new position induces a new channel, one of the new positions
will correspond to the best new performance level. The sensor then moves to this position.

To be more specific, let the sensor position at time � be denoted by ������� and the number of
candidate positions be restricted to ��� . Let the �	� vectors 
�� , �������������������� represent points on a
sphere centered at the origin and with radius � meters. Then the sensor measures communication
quality at each position ������� �!
"� and selects the position with the highest quality for �����#� �$� .

Note that the radius � need not be particularly large for this scheme to work well. For in-
stance, if the channel experiences deep, long fades, small changes in position can move the sensor
completely out of the fade, increasing SNR by tens of dB. Note also that the ‘autonomous’ la-
bel for this kind of ISP does not preclude the use of repeated known training sequences sent by
the source. Channel or BER estimates estimates based on such training sequences represent two
quality measures. A measure that is independent of pilot symbols or training sequences is the
constellation-quality measure that assesses the tightness of the constellation cluster elements at the
destination.

Random Cooperative Parameter Adjustment.
In this simplest CISPS, the destination assesses the communication quality through some means
(use of periodically repeated pilot symbols or training sequences or constellation quality measures),
and when the quality is judged poor, the destination chooses a set of system parameters at random
and relays this information to the source through the feedback channel. A limiting case corresponds
to continuous random parameter adjustment in which the quality is always judged to be poor.

The amount of information to be sent to the source through the feedback channel can actually
be quite small if the source and destination each have access to a table of system-parameter options.
The random destination decision could then be communicated to the source by the transmission of
a single small-integer table index. To be specific, the CISPS could use one of four parameter sets
shown in Table 1. Note that these parameter sets include differences in modulation type, coding
scheme, center frequency, and symbol rate (bandwidth). The 2FSK parameter set is more likely
to result in acceptable communication for the poorer channels, whereas the 64QAM parameter set
will maximize data rate for the better channels.

Preset Cooperative Parameter Adjustment.
In the next CISPS, the destination again measures the communication quality and makes a de-
cision regarding whether to switch parameter sets. Here, however, the destination can choose
only two new parameter sets for each current parameter set. One of the sets corresponds to de-
graded quality and the other to improved quality relative to the previous quality assessment. Thus,
the parameter-set index is a Markov process with transition probabilities jointly specified by the
stochastic channel model and application design constraints, as illustrated in Figure 5 for the pa-
rameter sets in Table 1. The basic idea is that the system senses the environment and tries to match
its parameters to the environment but only has a limited number of choices and cannot select the
parameters arbitrarily, but must walk up (or down) the sequence of progressively more (or less)
capable system parameter sets.

Optimal Cooperative Parameter Adjustment.
In the third CISPS, the destination attempts to select the best parameter set from its allowable sets.
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Set Modulation Coding Carrier Symbol
No. Type Scheme Frequency Rate
1 2FSK Conv., � � ��� � 200 MHz 20 kHz
2 OOK None 250 MHz 30 kHz
3 QPSK Conv., � ������� 300 MHz 50 kHz
4 64QAM Conv., � ������� 300 MHz 50 kHz

Table 1: Four example parameter sets for the random cooperative parameter-adjustment example.

1 2

43

2FSK

QPSK

OOK

64QAM

p(2|1)

p(1|2)

p(3|4)

p(4|3)

p(3|2)
p(2|3)

p(1|1) p(2|2)

p(4|4)p(3|3)

Figure 5: Illustration of parameter-set Markov process.

Thus, all transitions between parameter-set states are potentially valid. The probability 		� �
�"� of
transitioning from state � to state  is simply the probability of state  , 		� �� . This scheme may be
preferable when the channel is sensed with very little error, but when the sensing is error-prone or
crude, the previous CISPS may be superior because the system is prohibited from making unwise
radical changes in the parameter set.

3.2 Summary of Basic ISP Approach

The basic ISP notion advanced in this report is the periodic sensing of a time-varying environ-
ment combined with a means for modifying communication-link processing and transmission pa-
rameters accordingly. The concept generalizes modern communication-system notions such as
rate-adaptation and multi-carrier modulation by allowing virtually any parameter to be modified,
such as carrier frequency, modulation type (not limited to constellation type), coding scheme and
parameters, etc. For example, a system may adaptively switch between frequency hopping, direct-
sequence spread spectrum, and large-alphabet digital QAM in response to the presence of narrow-
band interferers, shadowing or fading, high SNR, or time-varying throughput and error constraints.

4 Mathematical Abstraction

In this section we set out to abstract our ISP communication problem in general mathematical
terms. This abstraction will form the basis for posing interesting and relevant mathematical prob-
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lems.
First, note that each system parameter set effectively induces a discrete channel, as illustrated in

Figure 6. Often we will be interested in the subclass of discrete memoryless channels (DMCs), for
which each output is statistically dependent only on the corresponding input and not on previous
inputs or outputs. A general DMC is characterized by the input alphabet ��� ������������������� , the output
alphabet �	���
�������������
�� , the channel transition probabilities 	���� � ,

	 ��� � �� Prob ��� ������
 � ����� � �
and the prior probabilities �����
��� ������� �
��� , as illustrated by the graph in Figure 7. The probability
	 ��� � is the probability that the channel output is decided as � � given that the channel input was ��� .
The probability ��� is the prior probability of transmitting the letter ��� .

The transition probabilities are determined by the physical channel, the modulation, and the
demodulator. For example, consider uncoded BPSK signaling on the additive white Gaussian
noise (AWGN) channel with perfectly coherent demodulation and equiprobable inputs. Then � �

� � � and the probability of bit error is given by the well-known formula

���! "$#�%&�('*) +-,
��.0/13254 �

where .6/ is the energy per bit,
172

is the noise spectral density, and

) �8� � �:9<;= �> �@?0A�BDC�E$FDG �
Denoting �H� as I , ��� as � , �	� as I , and �J� as 1, we obtain the binary DMC shown in Figure 8.

Channel
Decoder

Source
Decoder

Demodulator

Source
Coder

Channel
Coder

ModulatorSource

Dest

Channel

Discrete Channel

Figure 6: The basic communication system model with induced DMC highlighted.

Time-Varying Systems.
For our time-varying communication-system setup, the induced DMC is a function of time. That
is, the alphabets, alphabet sizes, and transition probabilities are functions of time. To model the
interval-oriented aspect of our particular situation, let � index each interval of length � seconds.
The the DMC is considered constant on each interval � . For the � th interval, the input alphabet size

ISP Technical Note 946



Mission Research Corporation Integrated Sensors & Processing

xK

yJ

x2

x3

x1

y2

y3

y1(q 1 )

(q 2 )

(q 3 )

(qK)

...

...

p
J|K

p
1|1

Figure 7: A diagram of a generic discrete memoryless channel.
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Figure 8: DMC for BPSK signaling.

is defined to be
��� � � ����� and the output alphabet size is � � � � ����� . This time-variant DMC can

be diagrammed as shown in Figure 9.
So far our time-varying system setup is rather general—a sequence of DMCs—and has not

been explicitly connected to a model for the channel evolution or to a model for system-parameter
selection. First, let’s model the channel. Then we will connect the channel to the DMC and finally
connect the DMC choice for interval � � � to the DMC and channel estimate for interval � .
Channel Models.
For each time interval indexed by � , we will assume that the channel remains in a particular state.
The channel-state random variable is denoted by

�
and it takes on the � values of �	� ������������������� .

The channel-state random variable for the � th interval is
�
	

and we would like to characterize the
set � ��	� of random variables for all � . We assume that the channel cannot make radical changes
over reasonable times (that is, � ), and that the channel evolves with primary influence coming from
its recent history. Thus, we can model the channel evolution using a first-order Markov process
(after Gallager [2]),

� � ��	 
 ��	 B ��� ��	 B � ��������� ��	 B � ��� � � ��	 
 ��	 B � � ��� ��� � and � ���
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Figure 9: General time-variant DMC for ISP modeling.

This model does not preclude independent channel states for which

� � ��	 
 ��	 B � � � � � ��	 � � � � ��	 � � ����� �� � ��������� � � �
We now present a few simple examples of our channel model.

1. Static AWGN. Let � ��� .
2. Fast-Fading Channels. Let � � � , ��� denote the unfaded state, and �@� denote the faded state.

A typical state-transition diagram is shown below.

p(2|1) = 0.5

p(1|2) = 0.9
FadedUnfaded

ss1 2

p(1|1) = 0.5 p(2|2) = 0.1

3. Slow-Fading Channels. Let � � � , ��� denote the unfaded state, and �@� denote the faded state.
A typical state-transition diagram is shown below.

p(2|1) = 0.01

p(1|2) = 0.7
FadedUnfaded

ss1 2

p(1|1) = 0.99 p(2|2) = 0.3

4. Shadowed Channels. Let � � � , ��� denote the normal state, and �@� denote the shadowed state.
A typical state-transition diagram is shown below.
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p(2|1) = 0.0001

p(1|2) = 0.01
ShadowedNormal

ss1 2

p(2|2) = 0.99
(or 1.0)

(or 0.0)

p(1|1) = 0.9999

The channel state affects a fixed DMC only through the transition probabilities. So, each
transition probability becomes an explicit function of the channel state rather than the more general
function of � ,

	 ��� � ����� � � 	 ��� � � ��	 ���
which renders the transition probabilities—and hence the DMC—random variables rather than
arbitrary functions of time, as shown in Figure 10.

(t))(q 2

(q 3(t))

(t))(qK’

(t))(q1 x1

2x

x3

(S  )t

(S  )t
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...

y1

y2

y3

yJ’

p

p
(t)

(t)

(t)

(t)

(t)

(t)

(t)

(t)xK’
J’|K’

1|1

Figure 10: Time-variant channel-dependent DMC for ISP modeling.

DMC Selection based on Channel-State Sensing.
Let us now impose additional structure on the time-variant input and output alphabets and prior
probabilities that define a DMC. The central notion is that the system should sense the channel
state and use that information to select the next parameter set.

Suppose that the system measures the current channel state with some error and arrives at the
state estimate random variable

� 	
. For each time interval indexed by � , we define the system as

the input and output alphabets and the prior distribution on the input alphabet. We assume that the
destination records all previous channel-state estimates and all previously selected system choices.
Let there be � possible systems denoted by F ��� F ����������� F " and let the random variable � 	 denote
the system at interval � . The system � 	 is modeled as some function of the current channel-state
estimate and all previous system choices,

� 	�� � ��� � � 	 �	� 	 �	� 	 B ��������� ���
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Let us further suppose that only the current channel-state estimate and the current system are used
to choose the next system,

� 	�� � � � � � 	 � � 	 � �
We can model this probabilistically by another Markov process,

� � � 	�� � 
 � 	 �	� 	 �	� 	 B ��������� ��� � � � 	�� � 
 � 	 � � 	 ���
Now, if the destination chooses a system at random without regard to either

� 	
or � 	 , then

� � � 	�� ��
 � 	 �	� 	 ��� � � � 	�� ��� � � � � 	�� � � F � ���  � �����������	� � �
Our DMC diagram now requires three graphs: one for the channel process, one for the system
process, and one for the communication process, as shown in Figure 11. To complete our notation,
let the channel-state transition probabilities be denoted by ����� � ,

� ��� � � � � ��	 � � ��
 ��	 B � � � �����
and the system-state transition probabilities be denoted by � ��� �  / ,

� ��� �  / � � � � 	 � F � 
 ��	 B � � � � � � 	 B � � F / ���
Special Cases of the General ISP Communication-System Model.
Here we point out some special cases of our ISP model having practical or theoretical interest.

1. Classic DMC on a Static Channel.
Here � � � � � , meaning that the communication system is fixed and the channel has a
single state. The alphabets, priors, and transition probabilities are time-invariant. This DMC
applies to many of the conventional results on communications systems.

2. Classic DMC on a Time-Variant Channel.
Here ��� � and � � � , meaning that the alphabets and priors are fixed, but the channel
transition probabilities are time-varying [2] due to the evolving channel state.

3. Variable DMC on a Static Channel.
Here � � � and ��� � , meaning that the channel has a single state and the DMC is time-
varying. (This case may have little practical value.)

4. Uncorrelated DMC and Channel.
Here the sequence of DMC systems � � 	� is uncorrelated with the sequence of channel-state
estimates � � 	  . For example, the system does not use measurements to select the DMC, but
merely selects it at random. Alternatively, the DMC selection is influenced by time-varying
source data-rate constraints.

5. Unconstrained DMC Selection.
Here the system Markov process characterized by � � � 	 
 � 	 B ���	� 	 B � � degenerates to � � � 	 
 � 	 B � � .That is, the choice of the system parameters is not influenced by the current system, only by
the current channel-state estimate.
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Figure 11: Final diagram for time-variant DMC for ISP modeling.
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6. Constrained DMC Selection.
Here the system and channel are first-order Markov processes. The choice of system param-
eters is explicitly influenced by the previous system and the current channel-state.

Connection to AISPS and CISPS Systems in Section 3.
For the AISPS example in Section 3.1 in which the destination samples performance at each of a
set of perturbed positions and selects the best as the new destination position, we have an instance
of special case 5 above. The channel-state estimate in this situation is the collection of quality
measures indexed by the position vector.

For the random cooperative parameter adjustment CISPS example, we have an instance of
special case 4, and for the preset cooperative parameter adjustment example, we have an instance
of special case 6. Finally, for the optimal cooperative parameter adjustment example, we have
another instance of special case 5.

5 Specific Mathematical Problems of Interest

Now that we have developed a general framework for specifying mathematical models for a wide
class of ISP-enabled communication systems, we would like to analyze the models to determine
their structure and their performance.

The central question before us is: What is the benefit of an ISP communication system relative
to a conventional system? We desire to pose and solve problems that help answer this question.

Communication systems are judged by five criteria: optimality, error performance, and power,
bandwidth, and computational efficiency. For the first of these, the best possible system would
transmit at a rate very near the Shannon capacity with excellent error performance. What we
would like to do here is find a class of ISP-enabled systems that have a much larger capacity than
their traditional (conventional) counterparts, then find engineering solutions that approximate these
systems with reasonable power, bandwidth, and computational complexity at a high performance
level. On the other hand, large capacity gains may not be found using the present formulation
without mandatory order-of-magnitude increases in bandwidth, power, or complexity.

So the first step in our mathematical analysis of the proposed ISP communication system mod-
els is finding their capacities [2]–[16] since this will guide us to the situations with highest potential
ISP payoff. We include in the problem statements below several baseline problems that also serve
as warm-up exercises.

Problem Statements.

1. For an AWGN channel, derive equivalent DMCs for MFSK, MPSK, and MQAM. Include
also DSSS BPSK and FH signals if time permits.

2. Given a general time-invariant DMC, derive a formula for capacity. Evaluate the formula
for a variety of parameters such as

�
, � , and the transition probabilities. Make sure results

default to known or published results.

3. Given a static system � and a variable channel with � � � states and a Markov probability
structure, derive a formula for capacity. Evaluate numerically and compare to static-channel
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baseline. This problem deals with a fixed communication system facing a time-varying
channel.

4. Given a static channel
�

and a variable DMC with � � � possible system states and a
memoryless system state sequence (systems are chosen independent of the channel state es-
timates with some probability distribution over the � systems), derive capacity and evaluate
numerically. This problem deals with a time-varying communication system in the presence
of a static channel.

5. For a model employing a variable channel ( � � � ) and a variable DMC ( ��� � ), assume
that the best system is always chosen for the current estimated channel state. Consider two
cases: (1) the channel state is estimated perfectly and (2) the channel state is estimated with
a known error rate. Derive and evaluate capacity.

6. Given � � � , � � � , and � 	 and
��	

first-order Markov with each system state F � connected
to at most itself and two additional states, derive and evaluate capacity.

6 Engineering Issues

We expect that if any large capacity or performance gains are predicted by the mathematical anal-
ysis of our ISP model, they will require relatively sophisticated implementations. In particular, the
ability to radically and quickly alter modulation type will be greatly enhanced by the use of the
emerging software-radio and high-speed computational technologies. Similarly, the ability to radi-
cally and quickly modify the carrier frequency across a wide band will be enhanced by cutting-edge
switching and oscillator technology.

Significant engineering issues are expected to center on how best to design any required peri-
odically transmitted pilot symbols and on the specific elements that enter the modifiable-parameter
set � � .

7 Problem Analysis

In this section we present our analysis results for the problems posed in Section 5.

7.1 Formal Definitions

Definition 1 (Input Alphabet) Let the input alphabet for a static (time-invariant) discrete memo-
ryless channel be defined by the

�
numbers ��� ������������� . For a dynamic (time-varying) DMC, the

size of the alphabet is variable. For the
�
th DMC � � , the alphabet size is

� � � ��� � � �
.

Definition 2 (Output Alphabet) Let the output alphabet of a static DMC be defined by the �
numbers �	�������������� . For the

�
th DMC � � in a sequence of DMCs, the size is a function of � � :� � � � � � ��� .
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Definition 3 (Prior Input Probabilities) Let the prior probabilities on the input alphabet for DMC
� � be denoted by ����� � �	� �������������
� ��������� � � �	� ��� . For each

�
we require���������	 ��
�� � � � � �	� ��� � � �

For a static DMC, the prior probabilities are denoted simply by �@� , � ��� ��������� �
.

Definition 4 (Transition Probabilities) The transition probabilities for a static DMC with
�

in-
put letters and � output letters is defined by

� �� ������
 � ����� � � � �  
 � � � 	 ��� � �
for � � � ��������� �

and  � ����������� � . For the
�
th DMC � � in a sequence of DMCs and a dynamic

channel with channel state
� � , we have

� ��� � � ��� 
 �&� ����� � � � �	� ��� � � � �
� � � � �	� ��� � 	 ��� � � � � �	� ��� �
When the channel is static the conditional transition probabilities reduce to 	 ��� ��� � ��� and when the
DMC is fixed they reduce to 	 ��� � � � ��� .
Definition 5 (Dynamic Channel Model) The dynamic channel is modeled as a first-order Markov
process with � states ��� ������� ��� � . The channel state for the

�
th time interval is modeled by the ran-

dom variable
� � . The channel-state transition probabilities obey the relation

� � � � � � � � ��� 
 � � � � � E � � � B � � � ����������� � � � � � � � � 
 � � � � � B ��������� �� � � � � � � 
 � ��� �
for all

� � �� � �� ������� .
Definition 6 (System Parameter Set) A system is defined by the selection of an input alphabet,
output alphabet, and prior probabilities on the input alphabet. A system is typically denoted by � .

Definition 7 (Channel Estimator Model) The channel estimate for time interval
�

is denoted by� � ; this is an estimate of
� � and can take on the values �J������������� � . The estimator is a function of

the current channel state only and is modeled probabilistically as

� � � � � � � � 
 � � � � � E � � � � � � 
 � ��� �
For perfect channel-state estimation, � � � � � � � � 
 � � � � � E � is 1 for �� � �� and is zero otherwise.

Definition 8 (Dynamic System Model) The system evolves as a function of previous systems and
the previous channel-state estimates. The system in the

�
th time interval is denoted by � � and can

take on one of the � values F ����������� F " . The system sequence is modeled as a Markov process,

� � � � � � � F�� 
 � � � � � � � � � B � � � � E ������� �	� � � F � � � � � B � � F � E ������� � � � � � � � � � F�� 
 � � � F � � �� � � � � � �
� � � � � � � 
 � � �	� �����
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Definition 9 (Channel-Use Sequence) The random variables � and � denote channel inputs
and outputs. Thus, � takes on the values ��� ��������� ��� and � takes on the values � �����������
�J� . Consider
a sequence of

1
successive channel uses. Let the

1
-vectors � � � � ����������������� and � � � �� ������� � �����

denote the random inputs and outputs, respectively. The
�
th element of � , �� , takes one of the values�H� ����������� ��������� and similarly �@� takes one of the values � ��������� �
� � � � � � . Let 	 � � G ����������� G ��� and
 � ��� ����������� � ��� denote valid values for � and � , respectively. The sequence of channel states is � � � � ��������� � ��� , where

� � can take on the values �J� ������������� . Similarly, the sequence of systems is� � � � � ������� �	����� where � ��� � F ����������� F "  . Let � � ��� � ��������� � ��� and � � ��� ����������� � ��� denote
valid values for


and

�
, respectively.

Definition 10 Symmetric Channel A DMC is symmetric if the set of outputs can be partitioned into
subsets in such a way that for each subset the matrix of transition probabilities has the property
that each row is a permutation of each other row and each column is a permutations of each other
column [2].

7.2 Problem 1: Equivalent DMCs for Various Modulation Types

This aspect of the work was deferred in favor of the other work reported on herein, and due to
changes in contract funding and objectives, we were unable to return to it.

7.3 Problem 2: Static DMC and Channel
Theorem 1 (Mutual Information for Static DMC and Static Channel)
The average mutual information for a static system on a static channel is given by

� �8���
� � � �	
� 
�� �	 ��
�� 	 ��� �����������

+
	 ��� � �

�

�� � � 	 ��� � 4 �

Theorem 2 (Capacity for a Static DMC and Static Channel)
The capacity of a static system on a symmetric static channel is achieved by using equiprobable
input letters, and is given by ! � "$#&%')()*,+ � �8�-� ���

� �
�

	
�! � 	 ��� � �.���

+
� 	 ��� � �
�

�� 	 ��� � 4 �

7.4 Problem 3: Static DMC and Dynamic Channel

Theorem 3 (Mutual Information for Static DMC and Dynamic Channel)
The average mutual information for a static system facing a dynamic channel over

1
channel uses

is given by � �8� � � � � � � 	 /  0 � �1� � 
 
 � �2	 � � �3� �2	 �4�.��� 5 � �1� � 
 
�� �6	 �
� �1� � 
 � 7 �
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where

� �1� � 
 
 � �2	 � �
	��

� � � � � � � � � B ��
� 
�� � � � � � � � � � � � 
 � � � � ������ ��� 
�� � ���@��� � � 
 ����� G � � � ��� � � ��� �

� � � � 
 � � 	�� � � � � � � � � � � B ��
� 
�� � � � � � � � � � � � 
 � � � � ����� � ����
�� � ���@��� � � 
 � ��� � � ��� �

� ��@��� � � 
 � ��� � ��� � �	
�

�� � ��@� � � ��
 ����� �

�
� � ��� � � � �

�
�

and

� �3� �2	 � � ��
� 
�� ���	� � G � � �$�	� �

Theorem 4 (Capacity for a Static DMC and Dynamic Channel)
The capacity of a static system on a symmetric dynamic channel is achieved by using equiprobable
inputs for each system, and is given by! � ��
�"�� ; " #�%')( * + �1 � �8� � � � � �

� ��
�"�� ; �1 � � � � �
� � ���� (�� 
���� � �
7.5 Problem 4: Dynamic DMC and Static Channel

Theorem 5 (Mutual Information for Dynamic DMC and Static Channel)
The average mutual information for a dynamic system facing a static channel over

1
channel uses

is given by � �8� � � � � � � 	 /  0 � �1� � 
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Theorem 6 (Mutual Information for Random DMC and Static Channel)
The average mutual information for a randomly selected DMC on a static channel over

1
channel
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Proposition 1 (Capacity for a Dynamic DMC and Static Channel)
The capacity of a dynamic system on a symmetric static channel is achieved by using equiprobable
inputs for each system, and is given by! � � 
�"�� ; " #�%')()*,+ �1 � � � � � � � �

� � 
�"�� ; �1 � �8� � � � � ���� ( � � �  � � � 
���� ����� � � �
7.6 Problems 5 and 6: Dynamic DMC and Dynamic Channel

Theorem 7 (Mutual Information for Dynamic DMC and Dynamic Channel)
The average mutual information for a dynamic system with channel-state estimation facing a dy-
namic channel over

1
channel uses is given by� �8� � � � � � � 	 /  0 � �1� � 
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where
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= � � ��������� �  .
Remark 1 Whenever the system is dynamic, there are several possible capacity definitions. Each
definition involves a different maximization of average mutual information. In the most general
case, we maximize over the entire collection of priors �@�

�
� � �	� ���  , a set of size

1  "��
�� � � F ��� . In
a less general case, the priors for all instances of the system

� � are equal and we maximize over
the � sets of priors, which is a smaller set of size

 "��
�� � � F � � .
Proposition 2 (Capacity for a Dynamic DMC and Dynamic Channel)
The capacity of a dynamic system on a symmetric dynamic channel is achieved by using equiprob-
able inputs for each system, and is given by! � � 
�"�� ; " #�%')( * + �1 � � � � � � � �

� � 
�"�� ; �1 � �8� � � � � ���� (�� � �  � � � 
���� ����� � � �
8 Discussion and Numerical Examples

The formulas for the most general ISP communication link—a dynamic system and dynamic
channel—have been coded in MATLAB. Since all the simpler cases are special cases of this for-
mula, all capacity formulas provided in the preceding theorem statements can be evaluated. For
even modest problems involving two systems ( � � � ) and two channel states ( � � � ), the ca-
pacity formulas are costly to evaluate even for small values of

1
such as 4 or 5. Nevertheless, we
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present here a few examples to illustrate the potential advantages of the ISP approach over static
approaches.

Recall that the basic idea behind the present effort is to find simple ISP systems that have
relatively large capacity for difficult channels. To this end we will be interested in both the absolute
capacity of the ISP (dynamic) link and the ratio of capacities between the dynamic and static links.
Before we present initial results in this vein, we first present a set of results aimed at providing
verification of the formulas and software.

8.1 Example 1: Verification of Formulas and Software

In this first set of examples, we provide evidence that the obtained formulas and their software
implementation provide correct results. Therefore, we focus on static systems and channels, for
which capacity results are either known or are obvious.

We are interested in two distinct kinds of transition probability functions. The first, called
flat, corresponds to the case in which 	 ��� � � ��� for ��� � and 	 ��� � � � � � � � � � ��� . That
is, all errors have equal probability � � . The second, called exponential, assigns progressively
smaller probabilities of error to errors involving symbols with increasing distance. That is, 	 ��� � �
��� � �! �� � �� , where

� �  � � � � � �2" 
�� � 
  � � 
 " ��� � � 
 
  � � 
 � � 
 " �	� �  �
for 
�� � , and

	 � � � ��� � 	

���
 � 	 ��� � �
Notice that the flat and exponential error models are identical for binary DMCs.

The first result corresponds to a binary DMC facing a static channel. The software is used to
compute the capacity of the link as a function of the cross-over (transition) error probability �-�
(see Figure 8). The resulting capacity is plotted in Figure 12, which can be compared to results
in many communication and information-theory textbooks. The capacity has a maximum of one
bit per channel use, which is intuitively obvious, and a minimum of zero bits when the cross-over
probability reaches 0.5.

The second result corresponds to various
�

ary DMCs facing static flat and exponential chan-
nels. The capacities are plotted in Figure 13. For the flat channel, notice that the capacities for
each

�
are equal to ����� � � � � bits per channel use when the channel is perfect ( � � � I ). Then

each capacity reaches zero when � � � ��������� � � � � , indicating that all probabilities in the transition
diagram are equal which is, again, intuitively pleasing. For the exponential channel, the capacities
decrease more slowly with increasing � � , as can be expected.

8.2 Example 2: Binary Systems Facing a Two-State Channel

In this second example, we consider a dynamic system consisting of two binary DMCs and a
dynamic two-state channel. The example is broken into two parts. The first part deals with an
interferer that bounces back and forth between the two systems’ bands, and the second part deals
with a random, long, deep fade (or shadow).
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Figure 12: Computed capacity for a binary DMC facing a static channel.
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Figure 14: Channel and system state diagrams for the first case in Example Two.

Random Interferer or Jammer.
The basic notion here is that the two DMCs correspond to binary links operating in disjoint fre-
quency bands. During any one time interval, the interferer is in only one of the bands. This notion
leads to the channel and system evolution models diagrammed in Figure 14. The nominal transition
probabilities for each system-channel combinations are as follows

System Channel ���
1 1 0.5
1 2 � I B �

2 1 � I B �

2 2 0.5

That is, when the channel state is equal to the system index, the interferer is in that system’s band
and communication is not possible. Thus, the system evolution model in Figure 14 indicates that
when the channel-state estimate is 1 and the current system index is 1, always switch to system 2.
Similarly, switch from system 2 to system 1 when the channel-state estimate is 2. Finally, perfect
(error-free) channel-state estimation is assumed in this example.

We first compute the capacity for system 1 facing the two-state channel. Computational costs
limit the number of channel uses in the calculations to eight. The capacity is computed as a function
of the transition (cross-over) probabilities for the two system-channel combinations: 	���� ��� for
channel state 1 and 	���� ��� for channel state 2. The capacity is shown on the left in Figure 15.
Clearly, the capacity approaches zero when both 	 � and 	$� approach 0.5. The computed capacity of
the two-system link is shown on the right in Figure 15. Here the transition probabilities for system
two are 	$� for channel state 1 and 	H� for channel state 2. A more revealing look at the results is
the ratio of the dynamic capacity to the static capacity, shown in Figure 16. Here it is seen that the
dynamic capacity can exceed twice that of the static capacity when 	�� is large and 	�� is relatively
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Figure 15: Static and dynamic system capacities for the first case in Example Two.

small. For example, for 	H� �:I�� � and 	$� ��� I B �

, we have a static capacity of 0.25 bits per channel
use and a dynamic capacity of 0.63.

Random Deep Fade
In the second part of this example, we again consider binary DMCs and a two-state channel, but
in this case the channel alternates between a good channel and a deep-fade channel. When the
channel is faded, each of the two binary DMCs experience the fade, but system two is much
more tolerant to fades that system 1. The basic idea is that the two system operate in overlapping
frequency bands, but use different modulation types (say coherent BPSK and incoherent BFSK),
which represent widely different combinations of power and bandwidth efficiencies.

The channel and system evolution state diagrams are provided in Figure 17, and the nominal
transition probabilities for the four channel-system combinations are as follows

System Channel ���
1 1 � I B �

1 2 0.5
2 1 � I B �

2 2 0.005

Thus, system 2 is generally superior to system 1 in both channel states, but has some other unde-
sirable qualities such as bandwidth inefficiency. When system 1 encounters a fade, it switches to
system 2, which operates until the fade ends.

The capacity for static system 1 and the two-state dynamic channel is shown on the left in
Figure 18 as a function of 	 � � ��� for channel state 1 and 	�� � ��� for channel state 2 (for a
sequence of eight channel uses). On the other hand, the computed capacity for the dynamic link is
shown on the right in Figure 18. Here, the transition probabilities for system 2 are always a factor
of 100 smaller than those for system 1. The ratio of dynamic system capacity to static is shown in
Figure 19. Note that the ratio is never less than unity and that it gets very large when the transition
probabilities for system one both approach 0.5. For the nominal probabilities above ( � I B �

and 0.5),
we have the static capacity for system 1 of 0.19 and the dynamic capacity of 0.48. When the fade
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Figure 16: The static-dynamic capacity ratio for the first case in Example Two.

is such that system 1 simply does not work, system 2 still does, and the capacity ratio is very large
because the static-system capacity is close to zero.

8.3 Example 3: Mixed-Rate Systems Facing a Multi-State Channel

In this final example, we study the challenging example involving a rate-adaptive system facing a
dynamic channel. The intent of the example is to compare a typical rate-adaptive scheme with an
ISP-enabled adaptive scheme.

We consider three possible bit rates corresponding to binary, 4-ary, and 8-ary modulation types.
For the typical rate-adaptive scheme, signalling is performed in a single fixed frequency band and
there are four possible channel states, roughly corresponding to the SNR condition seen by the
current demodulator: High, Moderate, Low, and Blocked. For the ISP system, we simply perform
the rate-adaptation in one of two possible frequency bands. When one band becomes blocked, the
system moves to the other band. We assume that the two bands are never simultaneously Blocked.

Channel-State Transitions.
Since there are two frequency bands and four possible states for each, there are sixteen distinct
channel states. We will explicitly rule out the state in which both bands are Blocked, so that the
total number of possible states is fifteen, as defined in Table 2.

To define the channel-state transition probabilities, we first assume that the probability of stay-
ing in the current state is high. Also, transitions are allowed only between adjacent states. For
example, the Band-1 state can transition between High and Moderate, but not between High and
Low or High and Blocked. This assumption effectively imposes a slow-variation constraint on the
physical channel. Finally, once a band is Blocked, it stays Blocked for some time.

We assign the same-state probability 	#� � 
 � � �:I"� � � . All other allowed transitions are equiprob-
able for each

�
. For example, for

� � � we have 		� � 
��� � 		��� 
� � � 		� � 
� � �:I�� I�� .
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Figure 17: Channel and system state diagrams for the second case in Example Two.
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Figure 18: Computed capacities for the links in the second part of Example Two.
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Figure 19: Computed capacity ratio for the second part of Example Two.

State Band 1 Band 2
Label

1 High High
2 High Moderate
3 High Low
4 High Blocked
5 Moderate High
6 Moderate Moderate
7 Moderate Low
8 Moderate Blocked
9 Low High
10 Low Moderate
11 Low Low
12 Low Blocked
13 Blocked High
14 Blocked Moderate
15 Blocked Low

Table 2: Channel-state labels for Example Three.
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System Band Modulation �
Label Label

1 1 2
2 1 4
3 1 8

4 2 2
5 2 4
6 2 8

Table 3: System labels for Example Three.

System Evolution.
To define the system-evolution probabilities, first note that there are six possible systems as shown
in Table 3. We need to specify the conditional probabilities

� � F � � � ��� 
 F � ��������� � � � �
where F � � � and F � denote the next and current systems, respectively, and �@� denotes the current
channel state. Our system evolution is governed by the following guidelines. Whenever the current
state is High, increase � . Whenever it is Low, decrease � . When it is Moderate, decrease � if
� is maximum, increase if � is minimum. If the current channel-state is Blocked, move to the
other frequency band and maintain � . This results in a set of system evolution probabilities that
are either unity or zero.

Channel-State Estimator.
For this experiment, we assume that the channel state is perfectly estimated. An example estimator
involves measuring the tightness of the clusters of received points in the constellation diagram.
For very tight clusters, the channel state is estimated as High, for somewhat loose clusters, it is
estimated at Moderate, etc.

DMC Transition Probabilities.
The transition probabilities depend on both the current system and the current channel state. Let
us assume that the � � ��� � � and � modulation types are well-matched to the Low, Moderate, and
High SNR levels. Mismatches between the value of � and the channel state result in penalties of
100.0 and rewards of 0.01, depending on the orientation of the mismatch. The nominal BER for
matched situations is 1.0e-4. Thus, when the channel state is Moderate and � � � , the BER is
assumed to be 1.0e-4. On the other hand, when the channel state is Moderate and � � � , the BER
is 1.0e-6.

Non-ISP Rate-Adaptive System.
For the Non-ISP rate-adaptive system, only one frequency band is available. Thus, there are only
four channel states and three systems. If the band becomes Blocked, communication takes place
at a BER of 0.5 for all values of � .

Results for Example Three.
For this example, the computational burden is quite high since the dimension of the largest system
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Channel Sequence Length
1

2 3 4 5
Non-ISP 0.94 1.07 1.11 1.12
ISP 1.63 1.87 1.97 2.00

Table 4: Capacity results for Example Three.

is eight and the channel has many states. Therefore, we are able to compute the exact capacity
only for a single set of parameters (as described) and for at most a sequence of five channel uses.
In this case, the computed capacities are as shown in Table 4. Many variations are of interest here,
but this single case reveals that even for mild channel-state evolutions, the benefits of ISP-enabled
modulation adaptation are quite large. We hope to expand upon this example in future work.

9 Conclusions

The general problem of integrating environment sensing with communication-system processing
is addressed in this report. Traditional communication-system design focuses on disjoint optimiza-
tion of the canonical processing blocks in a communication system. The system is deployed and
has little ability to adapt to unforeseen conditions. In the present work, the overarching concept is
of a communication system that can sense and assess its environment (channel) and use this infor-
mation to make appropriate changes to one or more system parameters. Such a system can tolerate
degraded conditions and take advantage of improved conditions. Our first goal in developing this
system notion is the establishment of an abstract system model. The second goal is computation
of channel capacities for the model. Progress toward these two fundamental goals is documented
herein. Further work will be aimed at development and evaluation of engineering solutions that
take advantage of the increased capacity of the new system model.
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Appendices

A Definitions of Capacity

In this appendix we provide a brief overview of capacity definitions. There is no single universally
applicably definition, although the basic idea in all cases is the maximization of average mutual
information. We review capacity for discrete memoryless channels (DMCs), discrete finite-state
channels (FSCs), discrete-time memoryless channels, and waveform channels. The material in this
appendix is based on Gallager [2].

A.1 Discrete Memoryless Channels

The discrete memoryless channel (DMC) is defined by a finite input alphabet, a finite output alpha-
bet, the prior probabilities on the input alphabet, and the transition probabilities, as shown in Figure
20. The transition probability 	���� � is the probability of receiving � � given that ��� is transmitted.

xK

yJ

x2

x3

x1

y2

y3
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(qK)
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Figure 20: General discrete memoryless channel definition.

The capacity of a DMC is the maximum average mutual information between the input and
output, where the maximum is over the prior probabilities,! � " #�%

�

� � ��� � � �6"$#&%
�

� ��� ��� ��� (1)
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where � �8�-� ��� �:.���� � �.��� 5
� �5� � �8��� 
 �����
��� � ��� � 7�� � (2)

For this relatively simple channel, the average mutual information is easy to compute and we obtain! �6"$#&%
�

	
�  � 	 ��� � � ���.���

+
	 ��� � �
�

�� 	 ��� � � � 4 (3)

A.2 Finite-State Channels

Here we have a discrete channel with a form of memory. The channel can take on one of � states
in each channel-use period. The time-varying channel gives rise to the notion of computing mutual
information over the first

1
channel uses, finding the capacity by maximizing this quantity, and

finally letting the number of channel uses increase without bound. The maximization is generally
over the prior probabilities for each of the channel uses. For special channels, such as decompos-
able channels in which a state may be reached from another state but may never leave, the priors
may indeed need to be different over the different channel-use periods in order to maximize mutual
information.

The channel here is modeled as a first-order Markov process. For
1

channel uses we have the
input sequence �	��������������� and the output sequence �D����������� ��� . Let the vectors � and � denote the
input and output sequences, respectively. For each possible value 	 of � we have a probability
measure ) � �1	 � . The probability measure on the output sequence is connected to the prior prob-
abilities and the probability structure of the channel. Let the

�
th channel state be represented by

the random variable
� � which can take on one of � states �J� ������������������� . By exploiting the Markov

channel structure, we can form the conditional output probability given by

� � �1� � � � 
 � � � 2 � � 	%	��
 � � ����� � � � 
 ��� � � � B � � � � B ������� B ��� � � B � 
 ��� B ��� � 2 ���
and

� � �1� 
�� � � 2 � � 	 %	� � � �1� � � � 
 � � � 2 � �
This type of conditional density is necessary since the channel state is allowed to depend on the
previous inputs, as required, for example, for simple modeling of inter-symbol interference.

The mutual information—conditional on
� 2

—can now be determined using ) � and the con-
ditional output density. Two types of capacity are defined corresponding to the best and worst case
values of

� 2
. ! � ��
�"� � ; ! ��� (4)

where ! �!�2"$#&%� � " #�%%	 ��� �8� � � � � 
 � 2 � ���� �8� � � � � 
 � 2 � � 	 ��� � ) � �3� � � � �1� 
�� � � 2 �4�.��� �
� � �1� 
 � � � 2 � ��� ) � �1� � � � �$� � 
 � � � � 2 � � �
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and � � is the collection of all the probabilities ) � �3� � . For the alternate capacity
! � , replace the

maximum over
� 2

with a minimum.

A.3 Discrete-Time Memoryless Channels

Here the channel input and output are continuous random variables so that the alphabets can be
infinite. The input letters are still applied in succession so that we retain the discrete-time nature of
the channel. The basic analysis concept for such channels is to choose a finite subset of the input
alphabet and to partition the output space into a finite collection of subsets. Let the input alphabet
be �H� ������� ����� with prior probabilities �&���8�H� �����������
���$�8��� � , and partition the output space into �
mutually exclusive events that exhaust the space. Let these events be denoted by �$�������������� . The
average mutual information follows as� �8���
� � � 	

�! � ��� �8����� � ��� � � ����
 ��� �4�.��� � � ��� � �8����
 ����� �
�

�� � � �8� � � � � � � �8����
 � � � � � (5)

and the capacity is ! �
	 � � ��� � � � (6)

where the supremum is over all finite selections of the � � , all priors � � � ��� � , and all output-space
partitions ��� . A difficulty with this analysis is that the input letters are not contained in amplitude
and therefore any particular noise level (resulting in the transition probabilities for the channel)
can be overcome by simply choosing an input alphabet with very large elements. Therefore, an
input constraint is often imposed on the input alphabet. Let the constraint function be a real-valued
function � ��� � . Then the input-constrained capacity is given by (5) and (6) with the supremum over
all partitions of the output space, all finite selections of the � � , and all priors ��� such that�	 ��
�� ��� � ��� � � �8��� ����� �
For example, � �8� � � � � represents an average energy constraint, and � �8� � � 
 � 
 represents an
amplitude constraint.

A.3.1 Discrete-Time Memoryless AWGN Channel

A special case of the general discrete-time memoryless channel is the discrete-time memoryless
channel with additive white Gaussian noise (AWGN). Let the channel noise have zero mean and
variance

� � and impose an average-energy constraint�	 � 
�� � ���8��� � � �� ��� �
Then the capacity is given by ! � �

� ����� 5 � � �� � 7 � (7)
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A.4 The Waveform Channel

For these channels, the input and output are functions of time, typically constrained to the class
of � � functions on the interval

� I"� � � (square-integrable functions). To make use of the previously
described discrete-alphabet discrete-time machinery, and to simplify the probabilistic analysis,
we represent each function as a (possibly infinite) expansion onto a complete orthonormal set of
functions. The set of coefficients for a function is then used to specify the function, which allows
reasonable and tractable definitions of mutual information and capacity for the waveform channel.

Let ������� and � ����� denote the input and output channel waveforms, and ��� �"�����  denote the
orthonormal set. Then the expansion coefficients for ������� are� � � 9 ;B ; ������������ ����� F � � 9 �2 ������������ ����� F ���
where ������� � ;	

� 
�� � �	� � ����� �
and similarly for ��� . Furthermore, let � � � � � ����������� ��� , � � � �	�����������
����� . Suppose that the
conditional probability densities 	 �$� � 
 � � exist for all finite

1
. Then these probabilities play the

role of channel transition probabilities. Let the prior probability density be denoted by � � �1� � .
Then the mutual information between channel input and output is given by� � � ������� �
� ����� � �2� � 
 �," ��� ; � �3� � � � �
where � �1� � � � �2�.��� � 	 �$�1� 
�� �


�
� � � �1� � 	 � �1� 
�� ��� F � � � �

The average mutual information is the limiting version of the expected value of the mutual infor-
mation, � � � � ����� � � ����� � � ��
�"� � ; . � � �3� � � � � � ��
�"�� ; � ��� �� � �
The capacity is then defined as ! � ��
�"� � ; �

�������
� ��� �� � � (8)

where the supremum is over all prior density functions consistent with any channel-input con-
straints.

A.4.1 AWGN Waveform Channel

Let the output of a waveform channel be the sum of the input and WGN with spectral density172 ��� . Apply an input-power constraint of
�

, and let the input be duration limited to an interval of
length � and have approximate bandwidth � . Then the capacity per unit time is given by! ��� ����� 5

� �
�

� 172 7 bits/sec � (9)

which is Shannon’s most famous channel-capacity result.
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A.5 Discussion

Presumably the waveform-channel capacity should never be less than the DMC or discrete-time
memoryless channel capacities when they are compared properly by constraining the bandwidth
and symbol/waveform duration. This conclusion is due to the lack of imposed system structure of
the waveform channel with respect to the other channel types; the waveform channel can always
be used as a discrete-time channel.

For a DMC with
�

letters in its input alphabet, the capacity for a channel use each � seconds
(assuredly achieved at infinite SNR) is simply! ����� � ����� � �

� bits/sec �

For example, for the BSC,
� � � and! "�%�� � ����� � � � �

� � �
� bits/sec �

On the other hand, for the waveform channel and any SNR, we have!��
� � � ����� � 5 � � �

� 172 7 bits/sec �

Constraining the bandwidth used for the DMC to be about ��� � � � , we have! ����� ��� ����� � �
bits/sec �

Clearly, the waveform channel capacity can be indefinitely increased by increasing the SNR,
whereas the DMC capacity cannot. Even for a fixed SNR, the waveform channel capacity can
be much larger than that for a given DMC.
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Abstract

Historically, transform coding of noisy sources has been performed by first estimating the message and then

quantizing this estimate. We show that much insight can be gained by recognizing that it is also optimum to

first transform the noisy observations into canonical coordinates, quantize, apply a Wiener filter in this coordinate

system, and then transform the result back to the original coordinates. Canonical coordinates are uncorrelated, and

quantization and Wiener filtering are applied to each component independently. Optimality of this approach can be

proved assuming additive white quantization noise. Half canonical coordinates minimize the mean-squared error

by minimizing the trace of the error covariance matrix and full canonical coordinates maximize information rate by

minimizing the determinant of the error covariance matrix. We also demonstrate in this paper that majorization is

the fundamental principle underlying proofs of optimal transform coding, sometimes in a very direct, sometimes in

a more indirect way.

Keywords

Transform Coding, Quantization, Canonical Coordinates, Rank Reduction, Majorization

I. I NTRODUCTION

In this paper we are interested in the following problem: Given a finite bit-budget ofB bits, how can

we most efficiently represent the information that anoisyobservationy ∈ IRn contains about arandom

messagex ∈ IRm? The apparatus that we will have at our disposal is depicted in Fig. 1. First, the

observationy is passed through a linear transformationA ∈ IRm×n, which we call thecoder. The output

of the coder isu = Ay, which is subsequently processed by ascalar quantizer. That is, each component

of u is independently quantized. The quantizer outputû is supposed to be an efficient representation

of the messagex, not the measurementy. To produce an estimatêx = Bû of the messagex, û is

linearly transformed by thedecoderB ∈ IRm×m. Without loss of generality, we suppose thatm ≤ n.

Furthermore, we will assume thatx andy have zero mean and that we have the necessary second-order

information available, namely, the covariance matrices ofx andy, denoted byRxx = ExxT andRyy =

EyyT , respectively, and the cross-covariance matrixRxy = ExyT . For an adaptive implementation of

our results we would assembleM independent snapshots of[x,y] into matricesX = [x1, ...,xM ] and

Y = [y1, ...,yM ]. The covariance matricesRxx, Rxy, andRyy could then be estimated asM−1XXT ,

M−1XYT , andM−1YYT .

The problem can now be re-formulated as follows: First, how do we chooseA andB, i.e., in what

coordinate system should we quantize? Second, how do we distribute the total number of bitsB over the

components ofu so thatx̂ is a good estimate ofx? To make precise what we mean by a “good” estimate
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assumptions Karhunen-Lòeve Transform

Paper AWN Gauss A = B−1 AT = A−1 u uncorr

[1] ¥ √ √ ¥

[2, App. I] ¥ ¥ ¥ √

[3, Ch. 8.6] ¥† ¥ ¥ ¥ √

[4, App.] ¥ ¥ √wlog √

This paper ¥ √ √wlog √

TABLE I

A SHORT HISTORY OF TRANSFORM CODING– WHAT HAS BEEN ASSUMED(¥) AND WHAT HAS BEEN PROVED

(
√

);
√wlog = PROVED THAT IT IS POSSIBLE TO CHOOSEA AS ORTHOGONAL WITHOUT LOSS OF

GENERALITY; ¥† = ONLY HIGH-RESOLUTION ASSUMPTION IS USED

we will employ two different performance measures:E = trRee = trEeeT = E‖x − x̂‖2, which is

the mean squared error (MSE), andV = detRee, which measures the volume of the error covariance

ellipsoid and thus information rate in the Gaussian case. For simplicity, let us refer to the problems where

we try to minimizeE andV as themin-traceandmin-detproblems, respectively.

u û

x x

Q
x̂Ay

mm

n mm m

B

Fig. 1. Transform Coder

A. Historical Overview

Noise-free transform coding:The arrangement in Fig. 1 is commonly known as a transform coder.

Most transform coders considered in the literature work on a noiseless measurementy = x. Given the

eigenvalue decompositionRxx = UΛUT , the orthogonal matrixU is often referred to as the Karhunen-

Loève Transform (KLT) corresponding tox. A common claim is the following: “The KLT is optimum

for noise-free transform coding, meaning that the choiceA = UT andB = U (together with a suitable

bit assignment strategy) minimizes the mean squared errorE.”

There are, however, important caveats regarding this claim. They concern the underlying assumptions

that have been made in order to prove it. Table I gives a short history of results for noise-free transform

coding. Proving optimality of the KLT really means establishing three properties:A = B−1, A is
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orthogonal, and the quantizer inputu is uncorrelated. However, as can be inferred from Table I, with the

exception of this paper, one or two of the KLT’s properties have always beenassumedrather than actually

proved.

The most important classification of a proof is according to whether or not it utilizes the high-resolution

assumption.High-resolutionmeans that the bit-budgetB is asymptotically large and fine quantizers are

employed. If some additional smoothness constraints are made, then quantization noise can be modeled

as additive white noise, which is independent of the input signal [5]. This leads to the additive white

noise (AWN) model for quantization [6], which we will discuss in Section II-A. Thus, the AWN model

implies high-resolution, but not vice versa. Without the use of the AWN model, restrictive assumptions

must be made as in proofs [1], [2], [3]. This should come as no surprise. Since a quantizer is an inherently

non-lineardevice, we should not expect the solution to the min-trace problem to be the KLT, a result from

linear algebra,unlesswe have linearized the quantizer through the use of the AWN model, or we have

made the problem statement so specific that we basicallyforcethe solution to be the KLT. In the paper that

introduced transform coding, Huang and Schultheiss [1]assumeduncorrelated quantizer input and then

provedthat, in order to minimizeE, A must be chosen asB−1 andA must be orthogonal. Intuition might

suggest that requiring uncorrelated quantizer inputs is the right thing to do. Strictly speaking, however, [1]

does not prove the optimality of the KLT because its central property is anticipated. RequiringA = B−1,

as [2], [3], [4] do, is more reasonable, because this guaranteesE → 0 asB → ∞. The additional

assumption oforthogonalA in [2], [3], however, is again restrictive, and we will show in this paper that

for performance measures other than MSE orthogonal transforms can be outperformed by non-orthogonal

transforms.

We should also mention that without the use of the AWN model, optimality of the KLT can only be

proved for Gaussian input. In fact, Zeger [7] has recently shown that, even in the high-resolution case,

KLTs can be strictly sub-optimum for transform coding if the input data is non-Gaussian. Thus, in the

table, the Gaussian assumption can only be dropped when the AWN model is employed.

In short, only a linearized version of this problem, which uses the AWN model, yields the KLT as the

general solution. Otherwise, if the optimality of the KLT can be shown for particular assumptions, this

is more an indication that the problem was cleverly posed rather than evidence that the KLT is indeed

optimum for transform coding in general.

Transform coding of noisy sources:If the observations are not equal to the message, then it has been

shown in [8], [9], that for the min-trace problem it is optimum to first find the MMSE estimate of the
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message and then quantize this estimate. This result has been extended in [10] to more general perfor-

mance measures, which include weighted MSE, and it has been shown in [11] that a particular weighting

produces a solution to the min-det problem. This establishes that the min-det problem can also be decom-

posed into estimator and quantizer. However, as we will demonstrate in this paper, it is not necessary and

not necessarily advantageous to estimate first and then quantize.

B. Contribution of This Paper

In this paper, we are concerned with transform coding of random sources from noisy observations. We

extend known results in the following ways:

• We show that a possible solution to the min-trace and the min-det problem is to first transform the noisy

observations into a half canonical [12, p. 330] or full canonical coordinate system [13] – [17], respec-

tively, quantize, Wiener filter in this coordinate system, and then transform the result back to the original

coordinates. Canonical coordinates are uncorrelated, which means quantization and Wiener filtering are

applied to each component independently. This extends [8], [9], [10] in that it provides aconcreteco-

ordinate system for quantization. Moreover, our results show that transform coders have many different

implementations: for example, there are implementations where quantization precedes estimation, and

vice versa.

• We generalize Table I to the noisy case, giving a proof that invokes the AWN model for quantization,

but does not make additional assumptions regarding the transformationsA andB. Moreover, previous

proofs in Table I only consider the min-trace problem, but we solve the min-det problem as well.

• We demonstrate that majorization is the fundamental principle underlying proofs of optimal transform

coding, sometimes in a very direct, sometimes in a more indirect way.

• We establish an important connection between quantization and rank reduction: It has been shown

in [11], [12, p. 330] that we should use half or full canonical coordinates for rank reduction, as well.

From a quantization point of view, rank reduction means assigning infinitely many bits to a number of

components and zero bits to the remaining components, which is sometimes also calledzonal sampling.

Together with our results, this means that we canfirst choose a coordinate system andthendecide how

many bits to spend on how many components.

Our program for this paper is as follows: In Section II-A we give a short introduction to quantization

using the AWN model, and in Section II-B we present a concise overview of some majorization results.

Sections III and IV prove that, under the min-trace and min-det criterion, the right coordinate systems in

which to perform quantization are half and full canonical coordinates, respectively. Finally, Section V
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looks at several different implementations of rank reduction and quantization in canonical coordinates.

Each realization has its benefits and brings its own insights.

II. PREREQUISITES

A. Quantization

A quantizer can always be modeled as an additive noise source, meaning that the quantizer output

û = u + q is equal to the quantizer inputu plus quantization noiseq. However, an MMSE Lloyd–

Max quantizer [3, Ch. 6.2] only guarantees thatEq = 0, Eûiqi = 0, andEûiui = Eû2
i . In general,

cross-terms such asEqiqj andEuiqj are non-zero and given by complicated expressions. In order to

make the quantization problem analytically tractable, it is common to employ the additive white noise

(AWN) model. It is based on the high-resolution assumption (fine quantizers with large number of bits)

and additional smoothness constraints [5], [6]. If we letbi denote the number of bits for quantizing

componentui, andσ2
ui

= Eu2
i the variance ofui, then the main assumptions of the AWN model may be

summarized as follows:

EqqT = diag (σ2
q1

, ..., σ2
qm

) (1)

σ2
qi

= Eq2
i = cσ2

ui
2−2bi , i = 1, ..., m (2)

EuqT = 0 (3)

The constantc is dependent on the distribution ofui. If ui is zero-mean Gaussian, thenc =
√

3π/2 [3,

Ch. 8.2]. The advantage of the AWN model is that a quantizer is modeled as an additivewhite noise

source that isuncorrelatedwith the input signal. Thus, the quantizer — an inherently non-linear device

— has been linearized.

Property (2) is a consequence of the high-resolution assumption. Without invoking the high-resolution

assumption, we can model the variance ofqi more generally as

Eq2
i = σ2

ui
f(bi) (4)

in the Gaussian case. Here,f(bi) is a non-increasing function of the number of bits spent on component

ui. Clearly, we expect to get better performance by increasingbi.

B. Majorization and Schur-Convex Functions

As suggested in the Introduction, majorization plays a central role in quantization. In this section we

introduce the concept.
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Definition 1(Majorization) [18, p. 7] A realn × 1 vectorx is said to bemajorizedby a realn × 1

vectory, written asx ≺ y, if

k∑

i=1

x[i] ≤
k∑

i=1

y[i], k = 1, ..., n− 1 (5)

n∑

i=1

x[i] =
n∑

i=1

y[i]. (6)

where[·] is a permutation operator such thatx[1] ≥ · · · ≥ x[n].

Intuitively, if x ≺ y, then the components ofx are “less spread out” or “more equal” than the components

of y. Note that majorization is sometimes also defined with respect to a permutation operator that arranges

the components ofx in increasingorder [19, Def. 4.3.24],x[1] ≤ · · · ≤ x[n].

The idea of majorization becomes most powerful when it is combined with the concept of Schur-

convexity. Functions that are Schur-convex preserve the partial ordering of majorization:

Definition 2(Schur-convex function)[18, Def. 3.A.1] A real-valued functiong defined on a setD ⊂
IRn is said to beSchur-convex onD if x ≺ y on D implies thatg(x) ≤ g(y). Similarly, a function is

calledSchur-concave onD if x ≺ y onD implies thatg(x) ≥ g(y).

Schur-convex functions are necessarily symmetric when they are defined onIRn. However, functions

that are not symmetric onIRn can still be Schur-convex on the set of orderedn-tuples, which we define

as

Dn = {(x1, ..., xn) : x1 ≥ · · · ≥ xn}. (7)

To prove that a function is Schur-convex or Schur-concave, there are a number of results, which can be

found in [18, Ch. 3]. We will use the following proposition:

Proposition 1: [18, 3.H.2] Letg(x) =
∑n

i=1 hi(xi), x ∈ Dn, where eachhi : IR → IR is differen-

tiable. Theng is Schur-convex onDn if and only if

h′i(a) ≥ h′i+1(b), a ≥ b, i = 1, ..., n− 1 (8)

whereh′i(a) denotes the first derivative ofhi evaluated ata. Analogously, ifh′i(a) ≤ h′i+1(b) whenever

a ≥ b, i = 1, ..., n− 1, theng is Schur-concave.

A classical result of majorization is that ifH is ann × n Hermitian matrix with diagonal elements

diag(H) = (H11, ...,Hnn)T and eigenvaluesev(H) = (λ1, ..., λn)T , then [18, Ch. 9.B]

diag(H) ≺ ev(H). (9)
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Sinceg(x) =
∏n

i=1 xi is a Schur-concave function [18, 3.F.1], this immediately proves Hadamard’s

inequality:
n∏

i=1

Hii ≥ detH. (10)

Many other inequalities such as the arithmetic mean/geometric mean (AM/GM) inequality or Minkowski’s

inequality can be viewed as consequences of majorization, as well [18].

III. H ALF CANONICAL COORDINATESSOLVE THE MIN-TRACE ORMMSE PROBLEM

In this section, we show that for the min-trace problem the right coordinate system for quantization is

the system ofhalf canonical coordinates[12, p. 330]. We will provide two proofs: one that is based on the

AWN model, and one that starts with more restrictive assumptions, but does not use the high-resolution

assumption. We will demonstrate how majorization is the underlying principle for both proofs.

We refer to the notation introduced in Fig. 1. The starting point for both proofs is the error vector

e = x− x̂, which, without any additional assumptions, is given by

e = (BAy − x) + Bq. (11)

A. Additive White Noise Model

If we invoke the AWN model, thenExqT = 0 andEyqT = 0, and the error covariance matrix

Ree = EeeT becomes

Ree = E
[
(BAy − x)(BAy − x)T

]
+ BRqqBT , (12)

which can be expressed as the sum of three positive semi-definite terms:

Ree = Q + (W −BA)Ryy(W −BA)T + BRqqBT (13)

In this equation,W = RxyR−1
yy is the Wiener filter andQ = Rxx −RxyR−1

yy RT
xy is its filtering error

covariance matrix. It is clear that we can make the middle term in (13) zero if we chooseBA = W, and

we will assume this optimum choice in what follows. Thus the infinite precision quantizer is a Wiener

filter with error covarianceQ. SinceQ does not depend on how we selectA andB, minimizing trRee

amounts to minimizingtrBRqqBT . This can be achieved with a variation on the proof for the noiseless
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case in [4, Appendix]. Denote thei-th column ofB by bi. We then have from (1) and (2)

trBRqqBT =
m∑

i=1

c2−2biσ2
ui
‖bi‖2 (14)

≥ cm2−2b

[
m∏

i=1

σ2
ui
‖bi‖2

]1/m

. (15)

The inequality is an AM/GM inequality, where we have defined

b =

(
m∏

i=1

bi

)1/m

(16)

as the geometric mean of the bit ratesbi. Sinceσ2
ui

= (ARyyAT )ii, Hadamard’s inequality yields

m∏

i=1

σ2
ui
≥ det(ARyyAT ). (17)

Using this inequality and the fact thatdetBBT = (detB)2 in (15) we obtain a new lower bound

trBRqqBT ≥ cm2−2b[det(ARyyAT ) det(BBT )]1/m

[∏m
i=1 ‖bi‖2

(detB)2

]1/m

. (18)

This expression can in turn be lower bounded by using Hadamard’s inequality once more to arrive at

trBRqqBT ≥ cm2−2b[det(ARyyAT ) det(BBT )]1/m (19)

= cm2−2b[det(BARyyATBT )]1/m (20)

= cm2−2b[det(RxyR−1
yy RT

xy)]
1/m. (21)

This final lower bound can be achieved if the inequalities we have used become equalities. For the

Hadamard inequalities this means that

ARyyAT = D1 (22)

BBT = D2, (23)

whereD1 andD2 are bothm × m diagonal matrices. The two conditions (22) and (23) determine the

coordinate systemfor u. The AM/GM inequality, on the other hand, becomes an equality if

c2−2bi
(
ARyyAT

)
ii
‖bi‖2 = K, (24)

whereK is independent ofi. This determines thebit assignmentfor u.

Let us first talk about the coordinate system. From (22) and (23), and sinceBA = W, we find that

BTRxyR−1
yy RT

xyB = DT
2 D1DT

2 , which implies thatB must diagonalizeRxyR−1
yy RT

xy. We could thus
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chooseB as the orthogonal matrixU from the eigenvalue decompositionRxyR−1
yy RT

xy = U(ZZT )UT ,

andA = UTRxyR−1
yy = UTW. With this choice, we are first estimatingx by passingy through

a Wiener filterW, and then quantizing the estimatex̃ = Wy, as in the noise-free case. The noisy

quantization problem is thus reduced to a standard quantization problem, as long as we observe that the

estimatẽx has covariance matrixRxyR−1
yy RT

xy rather thanRxx. This result connects to a finding in [8]

and [9]. There it was demonstrated that

E = E‖x− x̂‖2

= E‖x−E(x|y)‖2 + E‖E(x|y)− x̂‖2 (25)

= Efilter + Equantizer, (26)

which shows that for the MSE criterion it is optimum to apply the quantizer to aconditional meanes-

timator of the message based on the observations. The total MSEE is the sum of the infinite precision

filtering error and the error of quantizing the conditional mean estimate. Our result differs insofar as we

have shown that, using the AWN model for quantization and a transform coding system, it is optimum to

first obtain alinear MMSE estimatẽx = Wy through the Wiener filter, and then quantizex̃. Gaussianity

is not required for our proof. For jointly Gaussian message and observations our finding coincides with

[8], [9], but in general, they are different.

Moreover, our derivation also allows a different interpretation which brings fresh insight. If we start

with the singular value decomposition (SVD) [12, p. 330]

RxyR−1/2
yy = UZVT = U

[
Zm 0m×(n−m)

]

VT

m

VT
0


 , (27)

one can check that takingA = ZVTR−1/2
yy and B = U also satisfies (22) and (23). Thusu =

ZVTR−1/2
yy y, with covarianceRuu = ZmZT

m, is quantized for̂u, andx is then estimated aŝx = Uû.

The diagonal elements ofZm are thehalf canonical correlationszi betweenx andy. We can now express

the MMSE in terms ofzi as

min
A,B

E =

[
trRxx −

m∑

i=1

z2
i

]
+ c

m∏

i=1

2−2biz2
i . (28)

The first term in (28) accounts for the infinite-precision filtering error and the second term for the error

due to quantization.

The MSEE will be minimized if bits are assigned according to (24), which says that

c2−2biz2
i = K, (29)
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subject toB =
∑m

i=1 bi. The solution to the bit assignment problem parallels the one for standard

transform coding if we observe that the variance ofui is z2
i . Componentsui with greater squared half

canonical correlationz2
i will be assigned more bits and according to [3, Ch. 8.3] we have

bi =
B

m
+ 1

2 log2

z2
i(∏m

j=1 z2
j

)1/m
. (30)

Note that (22) and (23) allow the transformationsA andB to be scaled by a non-singular diagonal

matrix. If A is replaced byD−1A andB by BD, then the quantizer inputu will still be uncorrelated

and according to (24) the optimum bit assignment is left unchanged. For instance, we could choose

A = VT
mR−1/2

yy andB = UZm. With this choice, the transformationu = Ay takesy into a half canon-

ical coordinate system, where the white, unit-variance, half canonical coordinatesu are quantized. The

transformationB applies a diagonal Wiener filterZm in canonical coordinates to the quantizer outputû,

and transforms the filter output back into the original coordinate system. Note that in this implementation

quantization precedes estimation. In Section V we further explore how canonical correlations illuminate

quantization. We also look at different realizations of the min-trace quantizer.

B. No High-Resolution Assumption

If we do not use the high-resolution assumption, meaning that the AWN model cannot be employed,

either, we should not expect a half canonical coordinate system to be optimum in all generality. However,

for the min-trace problem, we can prove the following: Suppose thatx andy are jointly Gaussian and

A = UTW, B = U, whereU is orthogonal. Furthermore, we model the variance of the quantization

noise as in (4). Then given any particular bit assignment vectorb = (b1, ..., bN )T , the MSEE is mini-

mized if Ay produces an uncorrelatedu, i.e.,U diagonalizesRxyR−1
yy RT

xy. While the problem is very

restrictive, the proof is nevertheless interesting because it makes obvious the role that majorization plays

in quantization, as we now demonstrate.

First, notice that since message and observation are jointly Gaussian andA = UTW, we can use the

result from [8], [9], detailed in (25), and only concern ourselves with minimizing

Equantizer = E‖Wy − x̂‖2 = E‖U(u− û)‖2 = E‖u− û‖2 =
m∑

i=1

σ2
ui

f(bi). (31)

This means we must simply demonstrate that a KLT is optimum for quantizingx̃ = Wy, which has

covarianceRxyR−1
yy RT

xy.

The following generalizes [2, Proof 2, App. I]. Let us first re-order the components ofu such that

σ2
ui
≥ σ2

ui+1
, i = 1, ..., m − 1. Then note that minimization of (31) requires thatbi ≥ bi+1, i =
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1, ..., m− 1, becausef(bi) is a non-increasing function. This conforms with intuition: We should clearly

assign components with greater variance more bits. With these assumptions,σ = (σ2
u1

, ..., σ2
um

)T ∈ Dm

andb ∈ Dm are both members of the set of orderedm-tuplesDm.

The quantization errorEquantizer is a function ofσ. It follows from the majorization result

σ = diag(Ruu) ≺ ev(Ruu) = ev(RxyR−1
yy RT

xy) (32)

that in order to minimize any Schur-concave function ofσ ∈ Dm, U must diagonalizeRxyR−1
yy RT

xy.

Thus, if we can show that our performance measure is Schur-concave onDm, we have proved optimality

of the KLT. First notice that sincef is non-increasing andbi ≥ bi+1, we havef(bi) ≤ f(bi+1). It then

follows immediately from Prop. 1 thatEquantizer is Schur-concave.

Our proof is more general than the proof in [2] because it shows that the KLT is optimum for noise-free

transform coding for all Schur-concave performance measures, not just MSE. Of course, this statement

holds only for the assumptions stated at the beginning of this section. In particular,U must be orthogonal.

The reason this proof can not be extended to non-orthogonal transformations is that‖U(u − û)‖2 in

general depends on the cross-correlationsEqiqj , i 6= j, unlessU is orthogonal. These cross-correlations

are given by complicated expressions, which do not easily admit a solution to the minimization problem

minEquantizer.

C. The Role of Majorization

The proof in the previous section, which does not invoke the high-resolution assumption, makes the

role of majorization obvious. If we had complete control over how to distributetrRuu over the diagonal

elementsσ, then clearlyEquantizer as given by (31) would be minimized by choosingσ2
u1

= trRuu,

σ2
ui

= 0, i = 2, ..., m, and spending the entire bit-budgetB on quantizing componentu1. The question is

how close we can come to this rank-1 choice while observing the constraint thatu = Ux̃. Majorization

gives the answer. It is apparent that the bigger the spread in the vectorσ, the smaller MSE will be. Since

σ ≺ ev(RxyR−1
yy RT

xy), the maximum spread inσ, and therefore minimum MSE, is achieved whenU is

a KLT.

Let us now demonstrate how other proofs of the KLT’s MSE optimality make use of majorization.

Goyal et al. in [2, Proof 1, App. I] show, under the same restrictive requirements as the proof in Sec-

tion III-B, that given any orthogonal transformationT, there exists a KLTU that yields MSE at most as

high asT. They proceed by constructing a series of Jacobi rotations{Ji}, which iterativelydiagonalize

TE(x̃x̃T )TT . EachJi makes one off-diagonal element zero, and acts only on two diagonal elements,
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increasing one byδ, and decreasing the other one byδ. Since this increases the spread of the diagonal el-

ements, quantizingJi+1Ji · · ·J1Tx̃ is better than quantizingJi · · ·J1Tx̃. BecauseU = Jk · · ·J2J1T,

this iteratively shows optimality of the KLT. In essence, this construction is a complicated proof of

diag(Ruu) ≺ ev(Ruu), as we now show. Each transformationJi acts on the diagonal elements of

Ji−1 · · ·J1TE(x̃x̃T )TTJT
1 · · ·JT

i−1 as a so-calledT -transformation. AT -transformation has the form

T (z) = (z1, ..., zk−1, αzk + (1 − α)zl, zk+1, ..., zl−1, (1− α)zk + αzl, zl+1, ..., zn)T , whereα ∈ [0, 1].

Sinceev(Ruu) can be derived fromdiag(Ruu) by successive applications ofT -transformations, we

havediag(Ruu) ≺ ev(Ruu) [18, Ch. 4].

In a more general setting, we have proved optimality of half canonical coordinates for quantization in

Section III-A. The key step is Hadamard’s inequality (17). This inequality is a direct consequence of the

majorization resultσ ≺ ev(Ruu), as we have already demonstrated in Section II-B. Achieving equality

in this inequality requires the largest possible spread among the diagonal elements ofRuu = ARyyAT .

This leads to a diagonal matrixRuu with squared half canonical correlations on its diagonal.

IV. FULL CANONICAL COORDINATESSOLVE THE MIN-DET OR MAXIMUM INFORMATION RATE

PROBLEM

In this section, we show that the right coordinate system foru to solve the min-det problem is the

system offull canonical coordinates[13] – [17]. The proof will be based on the AWN model. It does not

seem possible to extend it to the non-high resolution case, not even under the restrictive assumptions of

Section III-B. The reason is thatdetRee depends on the cross-correlationsEqiqj , which are generally

non-zero in the absence of high-resolution.

We start the minimization ofV = detRee by applying Minkowski’s determinant inequality to (13):

V ≥
((

det(Q + BRqqBT )
)1/m

+
(
det

(
(W −BA)Ryy(W −BA)T

))1/m
)m

(33)

Since both the term in the leftdet(·) and the rightdet(·) expression are positive semi-definite, we can

minimizeV by making the second term zero, i.e., choosingBA = W. We will assume this optimum

choice in what follows. Using Minkowski’s determinant inequality once more yields

V ≥
(
(detQ)1/m +

(
det(BRqqBT )

)1/m
)m

. (34)

SinceQ does not depend on the choice ofA orB, det(BRqqBT ) must be minimized in order to minimize
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the bound onV . Similar to the procedure in the previous section we have

det(BRqqBT ) = (c2−2b)m
m∏

i=1

(
ARyyAT

)
ii

det(BTB) (35)

≥ (c2−2b)m det(ARyyAT ) det(BTB) (36)

= (c2−2b)m det(RxyR−1
yy RT

xy). (37)

Inequality (36) is again Hadamard’s inequality, which becomes an equality ifARyyAT is diagonal.

Minkowski’s inequality (34), on the other hand, becomes an equality if

Q = K ·BRqqBT (38)

for someK ≥ 0. With the knowledge thatARyyAT must be diagonal for equality, this means

Q = cK ·B[(ARyyAT )diag (2−2b1 , ..., 2−2bm)]BT . (39)

The expression in square brackets is a diagonal matrix. Thus, in order to evaluate what (39) implies for

B, we would like to factorQ = TDQTT , whereDQ is diagonal. To this end, we need the SVD of the

coherence matrix [17]

R−1/2
xx RxyR−T/2

yy = FKGT = F
[
Km 0m×(n−m)

]

GT

m

GT
0


 . (40)

Then we can re-write (39) as

Q = R1/2
xx F(I−KKT )FTRT/2

xx = cK ·B[(ARyyAT )diag (2−2b1 , ..., 2−2bm)]BT . (41)

It is apparent that the following are possible choices forA andB such thatBA = W, ARyyAT is

diagonal, and (41) is satisfied:

A = D−1KGTR−1/2
yy (42)

B = R1/2
xx FD (43)

Here,D is any non-singular diagonal matrix. ForD = Km, the transformationu = Ay = GT
mR−1/2

yy y

takesy into the full canonical coordinate system, where the white, unit-variance, full canonical coordi-

natesu are quantized. The transformationB = R1/2
xx FKm applies a diagonal Wiener filterKm in full

canonical coordinates to the quantizer output, and the filter output is transformed back into the original

coordinate system withR1/2
xx F. The diagonal Wiener filterKm contains thefull canonical correlations

ki betweenx andy on its diagonal.
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It is instructive to express the minimum achievable value ofV in terms ofki:

min
A,B

V =
(
(detQ)1/m + c2−2b(detRxyR−1

yy RT
xy)

1/m
)m

(44)

= det(Rxx) ·



(
m∏

i=1

(1− k2
i )

)1/m

+ c2−2b

(
m∏

i=1

k2
i

)1/m



m

(45)

The first term is the infinite precision filtering error, and the second term is due to quantization [16].

Equation (41) also determines the right bit assignment strategy. We immediately obtain

1− k2
i = cK · 2−2bik2

i i = 1, ..., m. (46)

If we defineγ2
i = k2

i /(1− k2
i ), we must satisfy

c2−2biγ2
i = K. (47)

This means we have the same solution as for (29) with half canonical correlationsz2
i replaced byγ2

i ,

bi =
B

m
+ 1

2 log2

γ2
i(∏m

j=1 γ2
j

)1/m
. (48)

Notice that, just like the min-trace problem, the min-det problem can also be solved by first computing

the linear MMSE estimate ofx asx̃ = Wy and then quantizing̃x. To see this, writeA = KGTR−1/2
yy =

FTR−1/2
xx RxyR−1

yy = FTR−1/2
xx W, andB = R1/2

xx F. Therefore, this problem again may be separated

into an estimation and a quantization problem, as depicted in Fig. 2 (d). Observe that the quantizer

is a maximum information rate rather than an MMSE quantizer. It contains the coderFTR−1/2
xx and

the decoderR1/2
xx F. Thus, even though coder and decoder are inverses of each other, they arenon-

orthogonal, unlike the min-trace case. This establishes that for performance measures other than MSE

orthogonal transformations can be outperformed by non-orthogonal transformations.

For jointly Gaussian message and measurements, the separation into Wiener filter and quantizer can

also be deduced from Ephraim and Gray [10], using a result from Huaet al. [11]. Ephraim and Gray

have generalized the result of [8], [9], detailed in (25), to more general performance measures, including

weighted MSE. Huaet al. have shown that the min-det problem is equivalent to the weighted MMSE

problemminA,B tr (R−1
xx Ree). Note that the discussion from Section III-A applies here, as well: Our

proof shows that, using the AWN model and a transform coding system, it is optimum (under the max-

imum information rate criterion) to first obtain alinear MMSE estimatẽx = Wy through the Wiener

filter, and apply a maximum information rate quantizer tox̃. It follows from [10] and [11] that, under the
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maximum information rate criterion, it is generally optimum to obtain aconditional meanestimate of the

message based on the observations, and then to quantize this estimate. For jointly Gaussian message and

observations, the findings coincide.

In the proof that full canonical coordinates are optimum for maximum information rate quantization,

the role of majorization is concealed through the use of Hadamard’s and Minkowski’s inequalities. For

the min-trace problemmin tr (Ree) of Section III-A, majorization requires maximum possible spread

among the diagonal elements ofRxyR−1
yy RT

xy. This leads to diagonalization of this matrix, with squared

half canonical correlations on its diagonal. For the min-det problem of this section, we are minimiz-

ing tr (R−1/2
xx ReeR

−T/2
xx ). Thus, majorization requires maximum possible spread among the diagonal

elements of the squared coherence matrixR−1/2
xx RxyR−1

yy RT
xyR

−T/2
xx . Again, achieving this maximum

spread results in diagonalization of this matrix, withsquared full canonical correlationson its diagonal.

V. D IFFERENTREALIZATIONS

Rank reduction can be viewed as a special case of quantization since it amounts to assigning infinitely

many bits to, say,r components and zero bits to the remainingm− r components. However, optimality

of canonical coordinates for rank reduction cannot be deduced from the results in the preceding sections,

since assigning zero bits to components violates the high-resolution assumption. The only exception is

the proof in Section III-B, which does not use the high-resolution assumption, but instead requires the

coder to be of the formA = UTW, U orthogonal, and jointly Gaussian message and measurement. If

we define the rate-distortion function asf(0) = 1, f(∞) = 0, we havef(bi) = 0 for i = 1, ..., r, the

components we keep, andf(bi) = 1 for i = r + 1, ..., m, the components we purge. Then the proof in

Section III-B directly shows optimality of half canonical coordinates for rank reduction under the MMSE

criterion, albeit under the restrictive assumptions mentioned above.

However, it has already been proved that some system of canonical coordinates is optimum for rank

reduction in all generality, without making any restrictive assumptions at all. Again half canonical coor-

dinates minimize the trace [12, p. 330] and full canonical coordinates minimize the determinant of the

error covariance matrix [11]. Together with our results the important implications are these: Suppose we

have a reduced rank Wiener filter, designed to either control MMSE or information rate. Then suppose

this filter is to be quantized. The resulting reduced rank quantized structure retains the original coordi-

nate system and replaces infinite precision internal coordinates with quantized coordinates. That is,the

coordinate system does not change.

Fig. 2 displays several different implementations of reduced rank quantizers in full canonical coor-
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Fig. 2. Different implementations of reduced rank quantizers in full canonical coordinates

dinates. The quantizer Q can assign zero bits to a number of components, which means that only an

r-dimensional statistic is stored or transmitted in these implementations. Before reconstruction, thisr-

dimensional statistic is augmented with zeros to build again anm-dimensional vector, as indicated in the

figure by ther → m building block.

Each line of Fig. 2 is insightful. Lines (a) and (b) whiten withR−1/2
yy , resolve onto the basis for

< Gm >, quantize and filter (or vice versa), reconstruct in the basis< F >, and color withR1/2
xx . There

are implementations where explicit estimation precedes quantization and vice versa. For example, line (c)

shows the quantized estimator to consist of whitening, analysis onto the basis for< Gm >, quantizing,

synthesis in the basis for< Gm >, coloring, and filtering. In a storage or transmission application, only

û = Q[GT
mR−1/2

yy y] would be stored or transmitted, andWR1/2
yy Gm would be computed at the receiver.

Quantization in half canonical coordinates can be implemented very similarly, simply replacingFKGT

with UZVT andRxx with the identity in Fig. 2.

VI. CONCLUSIONS

We have shown that transform coding of noisy sources is a story of majorization, either directly, or

indirectly through the use of Hadamard, AM/GM, and Minkowski inequalities. We have proved that the

right coordinate systems for quantization are the systems of half and full canonical coordinates. Half

canonical coordinates minimize the trace and full canonical coordinates minimize the determinant of the

error covariance matrix. It has been proved earlier [12, p. 330], [11], that canonical coordinates are
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optimum for rank reduction, as well. Together with our results, this means that we canfirst choose a

coordinate system andthendecide how many bits to spend on how many components.

When looking at different transform coding schemes, it is essential to be very clear about the underly-

ing assumptions. Our proofs that canonical coordinates are indeed optimum for transform coding require

the use of the AWN model for quantization. Without at least the high resolution quantization assumption,

very restrictive assumptions are needed to prove optimality of canonical coordinates. However, assump-

tions that are too restrictive usually limit performance: for instance, orthogonal transforms are in general

inferior to non-orthogonal transforms for performance criteria other than MSE, in particular maximum

information rate.

Finally, a remark regarding the extension to the complex case: It is often stated that quantization of

complex vectors is essentially the same as for real vectors, as long as the definition of the inner product is

changed from< x,y >= xTy to < x,y >= xHy, wherexH is the complex conjugate transpose ofx.

Thus, in this paper it should suffice to redefine covariance matrices asRxy = ExyH etc. This, however, is

only true if message and observation are jointly proper, which means that thecomplementary covariance

matricesExxT , ExyT , andEyyT are all zero. If they are not, linear algebra will not give optimum

performance andwidely linear transformations must be used instead [20]. Canonical coordinates for

improper complex random vectors are described in detail in [21].
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ABSTRACT

Historically, transform coding of noisy sources has been
performed by first estimating the message and then quan-
tizing this estimate. We show that it is also optimum to
first transform the noisy observations into canonical coor-
dinates, quantize, apply a Wiener filter in this coordinate
system, and then transform the result back to the original
coordinates. Canonical coordinates are uncorrelated, and
quantization and Wiener filtering are applied to each com-
ponent independently. Optimality of this approach can be
proved assuming additive white quantization noise. Half
canonical coordinates minimize the mean-squared error by
minimizing the trace of the error covariance matrix and full
canonical coordinates maximize information rate by mini-
mizing the determinant of the error covariance matrix.

1. INTRODUCTION

In this paper we are interested in transform coding of noisy
sources. Thus, we are looking for an answer to the ques-
tion: Given a finite bit-budget ofB bits, how can we most
efficiently represent the information that anoisyobservation
y ∈ IRn contains about arandommessagex ∈ IRm? A trans-
form coder is depicted in Fig. 1. First, the observationy is
passed through a linear transformationA ∈ IRm×n, which we
call thecoder. The output of the coder isu = Ay, which is
subsequently processed by ascalar quantizer. That is, each
component ofu is independently quantized. The quantizer
outputû is supposed to be an efficient representation of the
messagex, not the measurementy. To produce an estimate
x̂ = Bû of the messagex, û is linearly transformed by the
decoderB ∈ IRm×m. Without loss of generality, we suppose
thatm≤ n. Furthermore, we will assume thatx andy have
zero mean and that we have the necessary second-order in-
formation available, namely, the covariance matrices ofx
and y, denoted byRxx = ExxT and Ryy = EyyT , respec-
tively, and the cross-covariance matrixRxy = ExyT .

This work was supported by the DARPA ISP program under contract
AFRL F33615-02-C-1198 and the 2001 NSF ITR Initiative under contract
CCR0112573.

u û

x x

Q
x̂Ay

mm

n mm m

B

Fig. 1. Transform Coder

The problem can now be re-formulated as follows: First,
how do we chooseA andB, i.e., in what coordinate system
should we quantize? Second, how do we distribute the total
number of bitsB over the components ofu so thatx̂ is a
good estimate ofx? To make precise what we mean by a
“good” estimate we will employ two different performance
measures:E = trRee = trEeeT = E‖x̂− x‖2, which is the
mean squared error (MSE), andV = detRee, which mea-
sures the volume of the error covariance ellipsoid and thus
information rate in the Gaussian case. For simplicity, let us
refer to the problems where we try to minimizeE andV as
themin-traceandmin-detproblems, respectively.

In this paper, we show that a possible solution to the
min-trace and the min-det problem is to first transform the
noisy observations into a half canonical [3, p. 330] or full
canonical coordinate system [4], respectively, quantize, Wie-
ner filter in this coordinate system, and then transform the
result back to the original coordinates. Canonical coordi-
nates are uncorrelated, which means quantization and Wie-
ner filtering are applied to each component independently.
This extends previous results in that it provides aconcrete
coordinate system for quantization. Moreover, our results
show that transform coders have many different implemen-
tations: for example, there are implementations where quan-
tization precedes estimation, and vice versa.

The proofs of optimality that we provide are based on
the additive white noise (AWN) model for quantization. If
we let bi denote the number of bits for quantizing compo-
nent ui , and σ2

ui
= Eu2

i the variance ofui , then the main
assumptions of the AWN model may be summarized as fol-
lows:

EqqT = diag(σ2
q1

, ...,σ2
qm

)

σ2
qi

= Eq2
i = cσ2

ui
2−2bi , i = 1, ...,m

EuqT = 0
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The constantc is dependent on the distribution ofui . If ui is
zero-mean Gaussian, thenc =

√
3π/2.

2. MIN-TRACE PROBLEM

In this section, we show that for the min-trace problem the
right coordinate system for quantization is the system of
half canonical coordinates[3, p. 330]. Referring to the no-
tation introduced in Fig. 1, we can express the error vector
e= x̂−x as

e= (BAy−x)+Bq.

If we invoke the AWN model, thenExqT = 0andEyqT = 0,
and the error covariance matrixRee= EeeT becomes

Ree= E
[
(BAy−x)(BAy−x)T]

+BRqqBT ,

which can be expressed as the sum of three positive semi-
definite terms:

Ree= Q+(W−BA)Ryy(W−BA)T +BRqqBT (1)

In this equation,W = RxyR−1
yy is the Wiener filter andQ =

Rxx−RxyR−1
yy RT

xy is its filtering error covariance matrix. It
is clear that we can make the middle term in (1) zero if we
chooseBA = W, and we will assume this optimum choice
in what follows. Thus the infinite precision quantizer is a
Wiener filter with error covarianceQ. SinceQ does not de-
pend on how we selectA andB, minimizingtrRee amounts
to minimizingtrBRqqBT . This can be achieved with a vari-
ation on the proof for the noiseless case in [6, Appendix].
Denote thei-th column ofB by bi . We then have

trBRqqBT =
m

∑
i=1

c2−2bi σ2
ui
‖bi‖2

≥ cm2−2b

[
m

∏
i=1

σ2
ui
‖bi‖2

]1/m

. (2)

The inequality is an AM/GM inequality, with average bit
rate b = B/m. Sinceσ2

ui
= (ARyyAT)ii , Hadamard’s in-

equality yields∏m
i=1 σ2

ui
≥det(ARyyAT). Using this inequal-

ity in (2) we obtain a new lower bound ontrBRqqBT as

cm2−2b[det(ARyyAT)det(BBT)]1/m
[

∏m
i=1‖bi‖2

(detB)2

]1/m

.

This expression can in turn be lower bounded by using an-
other Hadamard inequality to arrive at

trBRqqBT ≥ cm2−2b[det(ARyyAT)det(BBT)]1/m

= cm2−2b[det(RxyR−1
yy RT

xy)]
1/m.

This final lower bound can be achieved if the inequalities we
have used become equalities. For the Hadamard inequalities

this means that

ARyyAT = D1 (3)

BBT = D2, (4)

whereD1 andD2 are bothm×m diagonal matrices. The
two conditions (3) and (4) determine thecoordinate system
for u. The AM/GM inequality, on the other hand, becomes
an equality if

2−2bi
(
ARyyAT)

ii ‖bi‖2 = M, (5)

where the constantM > 0 is independent ofi. This deter-
mines thebit assignmentfor u.

Let us first talk about the coordinate system. From (3)
and (4), and sinceBA = W, we find thatBTRxyR−1

yy RT
xyB =

DT
2 D1DT

2 , which implies thatB must diagonalizeRxyR−1
yy RT

xy.
We could thus chooseB as the orthogonal matrixU from the
eigenvalue decompositionRxyR−1

yy RT
xy = U(ZZT)UT , and

A = UTRxyR−1
yy = UTW. With this choice, we are first

estimatingx by passingy through a Wiener filterW, and
then quantizing the estimatẽx = Wy, as in the noise-free
case. The noisy quantization problem is thus reduced to a
standard quantization problem, as long as we observe that
the estimatẽx has covariance matrixRxyR−1

yy RT
xy rather than

Rxx. This result connects to a finding in [2], where it was
shown that for the MSE criterion it is optimum to apply the
quantizer to aconditional meanestimator of the message
based on the observations. The total MSEE is then the
sum of the infinite precision filtering error and the error of
quantizing the conditional mean estimate. Our result differs
insofar as we have shown that, using the AWN model for
quantization and a transform coding system, it is optimum
to first obtain alinear MMSE estimatẽx = Wy through the
Wiener filter, and then quantizẽx. Gaussianity is not re-
quired for our proof.

Moreover, our derivation also allows a different inter-
pretation which brings fresh insight. If we start with the
singular value decomposition (SVD) [3, p. 330]

RxyR
−1/2
yy = UZVT = U

[
Zm 0m×(n−m)

][
VT

m
VT

0

]
,

one can check that takingA = ZVTR−1/2
yy andB = U also

satisfies (3) and (4). Thusu = ZVTR−1/2
yy y, with covariance

Ruu = ZmZT
m, is quantized for̂u, andx is then estimated as

x̂ = Uû. The diagonal elements ofZm are thehalf canonical
correlationszi betweenx andy.

The MSEE will be minimized if bits are assigned ac-
cording to (5), which says that

2−2bi z2
i = M, (6)

subject toB = ∑m
i=1bi . The solution to the bit assignment

problem parallels the one for standard transform coding if
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we observe that the variance ofui is z2
i :

bi = b+ 1
2 log2

z2
i(

∏m
j=1z2

j

)1/m
(7)

We can now express the MMSE in terms ofzi andM as

min
A,B

E =

[
trRxx−

m

∑
i=1

z2
i

]
+cmM. (8)

The first term in (8) accounts for the infinite-precision filter-
ing error and the second term for the error due to quantiza-
tion. If the bit rateB is given, then we use (7) to assign bits
and (8) tells us the resulting MSE. On the other hand, if we
want to achieve a given MSE, we can use (8) to determine
the requiredM, and then (6) to assign bits.

Note that (3) and (4) allow the transformationsA and
B to be scaled by a non-singular diagonal matrix. IfA is
replaced byD−1A andB by BD, then the quantizer inputu
will still be uncorrelated and according to (5) the optimum
bit assignment is left unchanged. For instance, we could

chooseA = VT
mR−1/2

yy andB = UZm. With this choice, the
transformationu = Ay takesy into a half canonical coordi-
nate system, where the white, unit-variance, half canonical
coordinatesu are quantized. The transformationB applies
a diagonal Wiener filterZm in canonical coordinates to the
quantizer output̂u, and transforms the filter output back into
the original coordinate system.

3. MIN-DET PROBLEM

In this section, we show that the right coordinate system for
u to solve the min-det problem is the system offull canon-
ical coordinates[4]. The proof will again be based on the
AWN model. We start the minimization ofV = detRee by
applying Minkowski’s determinant inequality to (1):

V ≥
((

det(Q+BRqqBT)
)1/m

+
(
det

(
(W−BA)Ryy(W−BA)T))1/m

)m

Since both the term in the leftdet(·) and the rightdet(·)
expression are positive semi-definite, we can minimizeV by
making the second term zero, i.e., choosingBA = W. We
will assume this optimum choice in what follows. Using
Minkowski’s determinant inequality once more yields

V ≥
(
(detQ)1/m+

(
det(BRqqBT)

)1/m
)m

. (9)

SinceQ does not depend on the choice ofA or B, we must
minimizedet(BRqqBT) in order to minimize the bound on
V. Similar to the procedure in the previous section we have

det(BRqqBT) = (c2−2b)m
m

∏
i=1

(
ARyyAT)

ii det(BTB)

≥ (c2−2b)mdet(ARyyAT)det(BTB) (10)

= (c2−2b)mdet(RxyR−1
yy RT

xy).

Inequality (10) is again Hadamard’s inequality, which be-
comes an equality ifARyyAT is diagonal. Minkowski’s in-
equality (9), on the other hand, becomes an equality if

Q = K ·BRqqBT

for someK ≥ 0. With the knowledge thatARyyAT must be
diagonal for equality, this means

Q = cK ·B[(ARyyAT)diag(2−2b1, ...,2−2bm)]BT . (11)

The expression in square brackets is a diagonal matrix. Thus,
in order to evaluate what (11) implies forB, we would like
to factorQ = TDQTT , whereDQ is diagonal. To this end,
we need the SVD of the coherence matrix [4]

R−1/2
xx RxyR

−T/2
yy = FKGT = F

[
Km 0m×(n−m)

][
GT

m
GT

0

]
.

Then we can re-write (11) as

Q = R1/2
xx F(I −KK T)FTRT/2

xx

= cK ·B[(ARyyAT)diag(2−2b1, ...,2−2bm)]BT . (12)

It is apparent that if we chooseA = D−1KGTR−1/2
yy and

B = R1/2
xx FD, whereD is any non-singular diagonal ma-

trix, thenBA = W, ARyyAT is diagonal, and (12) is satis-

fied. ForD = Km, the transformationu = Ay = GT
mR−1/2

yy y
takesy into the full canonical coordinate system, where the
white, unit-variance, full canonical coordinatesu are quan-

tized. The transformationB = R1/2
xx FKm applies a diagonal

Wiener filterKm in full canonical coordinates to the quan-
tizer output, and the filter output is transformed back into

the original coordinate system withR1/2
xx F. The diagonal

Wiener filterKm contains thefull canonical correlationski

betweenx andy on its diagonal.
Equation (12) also determines the right bit assignment

strategy. Definingγ2
i = k2

i /(1−k2
i ), we must satisfy

2−2bi γ2
i = K, i = 1, ...,m. (13)

This means we have the same solution as for (6) with half
canonical correlationsz2

i replaced byγ2
i ,

bi = b+ 1
2 log2

γ2
i(

∏m
j=1 γ2

j

)1/m
. (14)

We can now express the minimum achievable value ofV in
terms ofki andK as

min
A,B

V = det(Rxx) ·
(

1+
c
K

)m
·

m

∏
i=1

(1−k2
i ). (15)
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Fig. 2. Reduced rank quantizers, full canonical coordinates

Similar to the MMSE quantizer, if the bit rateB is given,
then we use (14) to assign bits and (15) tells us the resulting
V. On the other hand, if we want to achieve a givenV, we
can use (15) to determine the requiredK, and then (13) to
assign bits.

Notice that, just like the min-trace problem, the min-
det problem can also be solved by first computing the lin-
ear MMSE estimate ofx as x̃ = Wy and then quantizing

x̃. To see this, writeA = KGTR−1/2
yy = FTR−1/2

xx RxyR−1
yy =

FTR−1/2
xx W, andB = R1/2

xx F. Therefore, this problem again
may be separated into an estimation and a quantization prob-
lem, as depicted in Fig. 2 (d). Observe that the quantizer is
a maximum information rate rather than an MMSE quan-

tizer. It contains the coderFTR−1/2
xx and the decoderR1/2

xx F.
Thus, even though coder and decoder are inverses of each
other, they arenon-orthogonal, unlikethe min-trace case.

4. DIFFERENT REALIZATIONS

It has already been proved that some system of canonical
coordinates is optimum for rank reduction, even without the
need to invoke the AWN model. Again half canonical coor-
dinates minimize the trace [3, p. 330] and full canonical co-
ordinates minimize the determinant of the error covariance
matrix [1]. Together with our results the important impli-
cations are these: Suppose we have a reduced rank Wiener
filter, designed to either control MMSE or information rate.
Then suppose this filter is to be quantized. The resulting
reduced rank quantized structure retains the original coor-
dinate system and replaces infinite precision internal coor-
dinates with quantized coordinates. That is,the coordinate
system does not change.

Fig. 2 displays several different implementations of re-
duced rank quantizers in full canonical coordinates. The

quantizer Q can assign zero bits to a number of compo-
nents, which means that only anr-dimensional statistic is
stored or transmitted in these implementations. Before re-
construction, thisr-dimensional statistic is augmented with
zeros to build again anm-dimensional vector, as indicated
in the figure by ther →mbuilding block.

Each line of Fig. 2 is insightful. There are implemen-
tations where explicit estimation precedes quantization and
vice versa. For example, line (c) shows the reduced rank
quantizer to consist of whitening, analysis onto the basis for
< Gm >, quantizing, synthesis in the basis for< Gm >, col-
oring, and filtering. In a storage or transmission application,

only û = Q[GT
mR−1/2

yy y] would be stored or transmitted, and

WR1/2
yy Gm would be computed at the receiver. Quantization

in half canonical coordinates can be implemented very sim-
ilarly, simply replacingFKGT with UZVT andRxx with the
identity in Fig. 2.

5. CONCLUDING REMARKS

Assuming the AWN model for quantization, we have proved
that the right coordinate systems for quantization are the
systems of half and full canonical coordinates. Half canon-
ical coordinates minimize the trace and full canonical co-
ordinates minimize the determinant of the error covariance
matrix. It has been proved earlier [3, p. 330], [1], that
canonical coordinates are optimum for rank reduction, as
well. Together with our results, this means that we canfirst
choose a coordinate system andthendecide how many bits
to spend on how many components. More details can be
found in the journal version [5] of this paper.
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Abstract

We study the problem of sensor-scheduling for target tracking—to determine which sen-
sors to activate over time to trade off tracking performance with sensor usage costs. We
approach this problem by formulating it as a partially observable Markov decision process
(POMDP), and develop a Monte Carlo solution method using a combination of particle
filtering for belief-state estimation and sampling-based Q-value approximation for looka-
head. To evaluate the effectiveness of our approach, we consider a simple sensor-scheduling
problem involving multiple sensors for tracking a single target.

1 Introduction

One of the key problems in the design and operation of modern tracking systems
is sensor scheduling, which aims to improve tracking system performance, utilize lim-
ited system resources more effectively and efficiently, and offer much faster adaptation
to changing environments [1]. The basic problem is to select which sensors to acti-
vate for target tracking over time to trade off tracking performance with sensor usage
costs.
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A number of papers have addressed the sensor-scheduling problem for different
applications. In [2–4], this problem is formulated as an optimization problem to min-
imize instantaneous estimation errors and/or maximize information gains. In such
schemes, however, long-term performance is not considered, which leads to myopic
sensor-scheduling policies.

To incorporate long-term performance measures, the sensor-scheduling problem
may be framed as a stochastic optimal control problem. In this case, a partially ob-
servable Markov decision process (POMDP) framework is a natural approach, which
is able to address both short-term and long-term benefits and costs [5–8].

Within the POMDP framework, the process measured by sensors (target posi-
tion, velocity, etc.) is a Markov process, and sensor scheduling is based on recursively
estimating and updating the belief state, the posterior distribution of the process given
the history of the sensor measurements and the sensor-scheduling actions. In some
situations, the process dynamics and measurements can be represented as linear Gaus-
sian state-space models, in which case the belief state can be calculated analytically
by Kalman filtering. In other situations [7,8], the process dynamics can be modeled
as a partially observable, finite state Markov chain, and it is also feasible to obtain
an analytic solution for the belief state using a hidden Markov model (HMM) filter.
In practice, however, process dynamics and observations can be very complicated—
usually nonlinear, non-Gaussian, and high-dimensional—which precludes analytic so-
lutions.

In this paper, we propose to explore the sensor-scheduling problem within a
POMDP framework but without relying on analytic expressions for belief states. In-
stead, we develop a Monte Carlo solution approach that combines particle filtering for
non-Gaussian, nonlinear belief-state estimation, and a Q-value approximation method
for solving the POMDP via “lookahead.” Our goal is to design a policy for sensor
scheduling to manage (simultaneously) tracking performance and sensor usage. The
Q-value approximation method aims to deal with the issue that the state space for
the POMDP model can be very large, practically ruling out the use of methods that
rely on direct reasoning with the state space in computing an optimal policy.

Particle filtering is a promising Monte Carlo method for posterior-distribution
estimation, working with random samples drawn from the process distribution. The
Q-value approximation method involves computing, for each candidate action to be
taken, a value of the “cost” of that action (the Q-value) and selecting the action with
minimum cost. Our approach blends the two separate techniques in a natural way. The
particle filter provides the Q-value approximation method a set of states (particles)
to initiate the evaluation processes, and in return the Q-value approximation method
delivers updated actions for the particle filtering belief-state estimation.

Our approach benefits from several appealing features. First, it can take both
long-term and short-term costs and benefits into account. Second, because it is a
Monte Carlo method, which does not rely on analytical tractability, it is straightfor-
ward in our approach to incorporate sophisticated models for sensor behavior and
target dynamics. In particular, the model we introduce in Section 3 includes a non-
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linear observation map and sensors with blind zones.

Our main contribution here is to combine POMDPs with particle filtering for
sensor scheduling. The formulation of the sensor-scheduling problem as a POMDP is
itself not new (see, e.g., [7,8]). However, our use of Monte Carlo sampling methods for
Q-value approximation is new in the sensor-scheduling context. Moreover, in previous
work, the belief state was estimated and updated using either Kalman filtering or
HMM filtering (e.g. [7,8]). Both Kalman filtering and HMM filtering are inadequate
for nonlinear, non-Gaussian state estimation. Recently, the authors of [4,9,10] have
also studied the use of particle filtering for sensor-scheduling. However, in [4,9,10] the
problem was not formulated as a POMDP.

To evaluate the effectiveness of our approach, we study a simple sensor-scheduling
problem involving multiple sensors for tracking a single target. In particular, we ex-
plore the tradeoff between tracking performance and sensor usage costs. Our simula-
tion results demonstrate that our method of combining particle filtering with Q-value
approximation is effective in calculating a sensor-scheduling policy that systematically
allows trading off tracking performance for sensor usage costs.

2 Preliminaries

We begin with a brief description of POMDPs; we follow the treatment in [11].
A POMDP is specified by state space S, action space U , observation space Z, state
transition law K(s′|s, u) (s ∈ S and u ∈ U), observation map L(z|u, s) (z ∈ Z), initial
state distribution p0, and one-step cost function g(s, u). The POMDP generates a
sequence of states that evolves as follows. At time k = 0, the system starts at the
initial (unobservable) state s0 with the given initial distribution p0. If at time k, the
state of the system is sk and control uk (chosen from a set of available actions U(sk))
is applied, a cost g(sk, uk) is incurred and the system moves to state sk+1 according
to the transition law K(sk+1|sk, uk); observation zk+1 is generated according to the
observation map L(zk+1|uk, sk+1).

A policy for the POMDP can be defined as a sequence π = {µk(p(sk|Ik))}
such that, for each k, µk(p(sk|Ik)) is a state-feedback map that specifies an ac-
tion uk on U depending on the belief state p(sk|Ik), the posterior probability dis-
tribution of state sk conditioned on the observable history Ik (I0 := (p0) and
Ik := (p0, u0, z1, . . . , zk−1, uk−1, zk) for k ≥ 1). We can track belief states in a POMDP
using Bayes’ rule.

Let JH(p(s0|I0)) = E
(∑H−1

k=0

∫
g(sk, uk) dp(sk|Ik)

)
= E

(∑H−1
k=0 g(sk, uk)

)
be the

expected total cost over a horizon of H time steps, where the expectation is taken
over all possible belief-state sequences. Our objective is to find a policy π∗ =
{µ∗

0(p(s0|I0)), µ
∗
1(p(s1|I1)), . . .} that minimizes JH(p(s0|I0)). We denote the associ-

ated optimal value (a function of the initial belief state) by J∗
H(p(s0|I0)). We write

QH(p(s|I), u) =
∫

g(s, u) d(p(s|I)) + E[J∗
H−1(p(s′|I ′))] (called the Q-value), where

J∗
H−1(p(s′|I ′)) is the optimal value over H − 1 time steps starting at the “next”

belief state p(s′|I ′). It turns out that an optimal policy satisfies µ∗
k(p(sk|Ik)) =
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arg minuk∈U(sk) QH−k(p(sk|Ik), uk), where J∗
H(p(s0|I0)) = minu∈U(s0) QH(p(s0|I0), u)

(also called Bellman’s optimality equation for POMDP); see [11] for further details.

We assume H to be very large, so that the optimal policy can be assumed to
be stationary. In this case, the optimal policy is approximated by assuming, at each
time, that the remaining horizon is H steps, so that the optimal action at time k can
be taken to be u∗

k = arg minu∈U(sk) QH(p(sk|Ik), u). This approach is called receding
horizon control, common in the optimal control literature (e.g., [12]). Note that the
resulting control law is simply this: given the current state, choose the action that
minimizes the Q-value at that state. Because the Q-value of an action summarizes the
future impact of taking that action, our control approach is also called “lookahead.”

3 Sensor-Scheduling for Target-Tracking Problem Formulation

In our context, there are many sensors distributed in a sensor field to track tar-
gets, and a global processor processing data from all sensors. For homogeneous sensors,
the tracking accuracy can be improved through data fusion of multiple sensors. How-
ever, the larger the number of sensors, the more resources they consume. Therefore it
is necessary to select an appropriate number of sensors to balance between tracking
accuracy and sensor usage. For heterogeneous sensors, their sensor-usage characteris-
tics and/or the quality of the data they transmit to the global processor are different.
In this case, data from one sensor can be used to complement the data from other
sensors in order to obtain broader coverage and more accurate target-state estimates.
How to appropriately select the right sensor combination to reach a tradeoff between
tracking accuracy and sensor usage is a key task of sensor scheduling.

We now describe a formulation of the sensor-scheduling problem within a
POMDP framework. Although our approach is fairly general, for ease of presenta-
tion we make some simplifying assumptions:

• We only track a single target;
• The target states to be tracked consist of its two-dimensional position and velocity;
• There are M sensors located at fixed positions to measure the following parameters:

range, range rate, and azimuth of the target;
• At each time step, only one sensor is selected (activated).

We consider an aggregate tracking system state vector sk = [tk, ak]
T , where tk and

ak are summaries for the target features and the sensor operations, respectively, in the
tracking system sufficient to characterize the objectives and potential actions. Specif-
ically, sk = [xk, ẋk, yk, ẏk︸ ︷︷ ︸

tk

, ak,1, . . . , ak,M︸ ︷︷ ︸
ak

]T , where xk and yk are the target-position

Cartesian coordinates, ẋk and ẏk are velocities, and ak,m ∈ {0, 1} is the activity
status of sensor m, m = 1, . . . ,M . The action space U is {1, . . . ,M}, and action
uk ∈ {1, . . . ,M} represents the sensor selected at time k. The observation at time
k is zk = [dk, rk, θk, ṙk]

T , where dk ∈ {0, 1} represents successful detection, and rk,
θk, and ṙk are range, azimuth, and range-rate measurements of the target using the
selected sensor uk at time k (if dk = 0, then rk, θk, and ṙk are ignored).
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In our formulation, the transition law K(s′|s, u) and observation map L(z|u, s)
are defined by the state equation and the observation equation as follows:

sk+1 = f(sk, uk, νk) (1)

zk = h(sk, ωk), (2)

where f and h represent the state dynamics and the observation map, respectively, and
νk and ωk represent the randomness in state transitions and observations, respectively.
We assume that {νk} and {ωk} are mutually independent i.i.d. random variables with
distributions pν and pω. Then, K(ds′|s, u) =

∫
1ds′(ν ′)f(s, u, ν ′) pν(dν ′) and L(dz|u, s)

=
∫
1dz(ω

′)h(s, ω′) pω(dω′) (1A represents the indicator function of A).

We first describe the state dynamics f . Because the state vector sk is com-
posed of two segments, the state dynamics can be decomposed in the following way:
f(sk, uk, νk) = [f t(tk, ν

t
k), f

a(uk)]
T , where νt

k represents target motion uncertainties.
The form of fa(uk) is clear: all its components are 0 except for the component cor-
responding to the selected sensor uk, where it is 1. The specific form of f t represents
the model for the motion of the target. As an example, the particular model used in
our simulation experiments is as follows (taken from [13]):

tk+1 =



xk+1

ẋk+1

yk+1

ẏk+1


= f t(tk, ν

t
k) =



1 Ts 0 0

0 1 0 0

0 0 1 Ts

0 0 0 1





xk

ẋk

yk

ẏk


+



T 2
s

2
0

Ts 0

0 T 2
s

2

0 Ts


 νx

k

νy
k

 (3)

where Ts is the sampling interval (assumed constant), and νx
k and νy

k are independent
noise processes with zero mean and variances σ2

x and σ2
y .

Next, we describe the observation map h, which represents how the sensor mea-
surements depend on the state. The particular form of h depends on the type of
sensors being considered. For example, in our simulation experiments, we follow the
radar model of [13], where each sensor has a Doppler blind zone (as is the case with
a CW or pulse Doppler radar). The probability of detection according to this model
is (for a particular sensor m):

Pd(m), if
∣∣∣∣ (xk−spx(m))·ẋk+(yk−spy(m))·ẏk√

(xk−spx(m))2+(yk−spy(m))2

∣∣∣∣ ≥ B0(m),

0, otherwise,
(4)

where Pd(m) ∈ (0, 1], B0(m) is the limit of the Doppler blind zone for sensor m, and
spx(m) and spy(m) are the Cartesian coordinates of the fixed position of sensor m.
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For this example, the observation map is given by

h(sk, ωk) =



hd
k(sk, ω

d
k)√

(xk − spx(m(ak)))2 + (yk − spy(m(ak)))2 + ωr
k(m(ak))

tan−1 yk−spy(m(ak))
xk−spx(m(ak))

+ ωθ
k(m(ak))

(xk−spx(m(ak)))·ẋk+(yk−spy(m(ak)))·ẏk√
(xk−spx(m(ak)))2+(yk−spy(m(ak)))2

+ ωṙ
k(m(ak))


(5)

where hd
k(sk, ω

d
k) is given by,

1{ωd
k
>Pd(m(ak))}, if

∣∣∣∣ (xk−spx(m(ak)))·ẋk+(yk−spy(m(ak)))·ẏk√
(xk−spx(m(ak)))2+(yk−spy(m(ak)))2

∣∣∣∣ ≥ B0(m(ak)),

0, otherwise,
(6)

m(ak) is the currently selected sensor, ωd
k is uniformly distributed over (0, 1), and

ωr
k(m), ωθ

k(m), and ωṙ
k(m) represent independent observation noise processes with

zero mean and variances σ2
r(m), σ2

θ(m), and σ2
ṙ(m), respectively, m = 1, . . . ,M .

The one-step cost function g(sk, uk) is an integrated metric that accounts for
the target-tracking performance and the sensor-usage costs at time-step k. As an
example, in our simulation experiments we use

g(sk, uk) = E
[
‖t̂k − tk‖2

]
+

M∑
m=1

(
cusage
m · 1{uk=m} + cstart

m · (ak,m − 1{uk=m})
2
)
, (7)

where t̂k is the estimated value of state segment tk (we use the mean of p(tk|Ik) as
t̂k), and cusage

m and cstart
m are the unit power-consumption cost and the unit sensor

start-up power-consumption cost for sensor m, respectively. The parameters cusage
m

and cstart
m , which control the tradeoff between tracking error and sensor usage costs,

are assumed to be user-specified. Certainly one can imagine setting up a system to
tune such parameters on-line, for example in response to measurements. However, the
criterion that drives this kind of tuning must then be specified; again, we consider such
criteria to be user-specified. But then this scenario falls right back into our original
framework, except with a more complicated objective function.

So far we have defined the state vector sk, the action uk, the observation vector
zk, the state transition law K(s′|s, u), the observation map L(z|u, s), and the one-step
cost g(sk, uk) for the sensor-scheduling POMDP model. Next we show how to obtain
an approximate optimal policy to schedule sensors for target tracking.

4 POMDP Solution via a Combination of Particle Filtering and Q-value
Approximation

In this section, we present our control approach based on “lookahead” for solving
the sensor-scheduling POMDP, which leads to an approximate optimal policy. The
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policy specifies, for each possible belief state, the (approximate) best sensor-activating
action to implement according to the objective function, where the belief state here is
the posterior distribution of the tracking system state conditioned on the observable
history at each time.

Recall from Section 2 that in the “lookahead” approach, the action is chosen at
each decision time by minimizing the Q-value for a moving horizon into the future.
To be precise, u∗

k = arg minu∈U(sk) = QH(p(sk|Ik), u), where p(sk|Ik) is the current
belief state.

Note that the action u∗
k to be chosen depends on belief state p(sk|Ik). Under

certain circumstances, analytical expressions of belief states can be derived. For in-
stance, if the observable history Ik is linear-Gaussian with respect to the tracking
system state sk, we can derive an analytical expression to recursively estimate the
posterior distribution with a Kalman filter. Alternatively, if the tracking system state
can be modeled as a Markov chain, as in [7,8], an HMM filter can be used for analyti-
cal belief-state estimation. In practice, however, the relationship between the tracking
system state and the observable history can be very complex—usually nonlinear, non-
Gaussian, and high dimensional—which makes it impossible to obtain an analytical
solution.

To overcome this difficulty, we describe a novel general approach that combines
two techniques: particle filtering for belief-state estimation and Q-value approxima-
tion, in which we represent the belief state by a cloud of particles. The Q-value
approximation method addresses the issue that the state space in practice can be
very large (especially in light of the need to represent a belief state), precluding the
use of methods that rely on direct reasoning with the state space in computing an
optimal policy.

4.1 Particle Filtering for Belief-State Estimation

Particle filtering is a sequential Monte Carlo method for on-line learning within
a Bayesian framework [14]. The method works with random samples drawn from the
underlying distribution, and is computationally realizable even for high-dimensional
problems. Particle filtering allows the use of realistic models, incorporation of a priori
information, and integration with decision processes.

In most particle-filtering formulations [14], the state equation, observation equa-
tion, and the initial state probability are described by sk+1 = f(sk, vk), zk = h(sk, ωk),
and p(s0) = p0, respectively, and the goal is to estimate recursively the posterior dis-
tribution p(sk|z1, z2, . . . , zk). However, in our sensor-scheduling problem, we have a
control variable uk in the state equation (1), and our goal is to estimate the pos-
terior distribution p(sk|Ik) = p(sk|p0, u0, z1, . . . , zk−1, uk−1, zk). Particle filtering with
control variables has been discussed recently in [15], though not within a POMDP
framework.

We can write the approximation of the posterior distribution p(sk|Ik) by a set of

samples or particles: p̂N(dsk|Ik) =
∑N

i=1 w
(i)
k δspt,k

(dsk), where δspt,k
denotes the Dirac-
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delta mass located at spt,k, N is the number of particles, and w
(i)
k are the normalized

“importance” weights.

Following [14], our particle filtering algorithm to estimate p(sk|Ik) is as follows:

(1) Initialization, k = 0.

• For i = 1, . . . , N , sample s
(i)
0 ∼ p(s0), set w̃

(i)
0 = 1/N , and set k = 1.

(2) Importance-sampling step.

• For i = 1, . . . , N , sample s̃
(i)
k ∼ q(sk|s(i)

k−1, Ik), where q(sk|sk−1, Ik) is a prese-
lected “proposal” function.
• For i = 1, . . . , N , update the importance weights

w̃
(i)
k = w̃

(i)
k−1

K(s̃
(i)
k |s̃

(i)
k−1, uk−1)L(zk|uk−1, s̃

(i)
k )

q(s̃
(i)
k |s̃

(i)
k−1, Ik)

.

• Normalize the importance weights according to w
(i)
k =

w̃
(i)
k∑N

j=1
w̃

(j)
k

.

(3) Selection Step.

• Resample with replacement N particles (s
(i)
k ; i = 1, . . . , N) from the set (s̃

(i)
k ;

i = 1, . . . , N) according to the normalized importance weights.
• Set k ← k + 1 and go to step 2.

Note that the main difference between our algorithm and the standard algorithm is
that the importance-sampling step in our algorithm involves the probability distribu-
tion of observation conditioned on the action.

In the importance-sampling step, we often choose either p(sk|s0:k−1, Ik) or
p(sk|sk−1, uk−1) as the “proposal” function. In the selection step, many schemes have
been proposed, such as residual sampling, systematic sampling, and Markov chain
Monte Carlo (MCMC) [14].

For the example in our simulation experiments, we use a special particle filter
algorithm for belief state estimation that exploits a priori knowledge of the sensor
blind zones. The basic idea is to have one set of particles for sensor blind zones, and
the other set of particles for the target. Though this idea is similar to that in [13],
our particle filter is designed for belief-state estimation rather than ordinary posterior
distribution estimation. We omit the details for brevity.

4.2 Q-value Approximation with Particle Filtering

Recall that according to the “lookahead” procedure, the action at time k is chosen
as u∗

k = arg minu∈U(sk) = QH(p(sk|Ik), u). We now describe how we approximate the
Q-values for the candidate actions. The need to approximate the Q-values stems
from the intractability of computing precise Q-values due to the excessively huge
state space in practice.

Several Q-value approximation methods have been proposed for large state-space
MDPs [16,17]. Here we consider one particular Q-value approximation method—policy
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rollout [16]. In the policy-rollout method, we estimate the Q-value for each belief
state and each action by averaging the evaluated accumulated costs from several
Monte Carlo simulation runs using a given base policy. This approximation gives us
an upper bound on the true Q-value.

Because we represent the belief state p(sk|Ik) using a cloud of particles, our Q-
value approximation method can take advantage of this representation in initiating
Monte Carlo simulation runs of the base policy. Specifically, we start each simulation
run at one particle for the belief state, apply action u for the first time step, and
apply a given base policy πb for the remaining time steps. This allows us to generate
N simulation runs, one for each of the N different particles. We estimate the Q-
value for each belief state and each action by averaging the evaluated accumulated
costs from these N Monte Carlo simulation runs. The resulting rollout policy is the
action minimizing Q̂H(p̂N(sk|Ik), u) = 1

N

∑N
i=1{g(s

(i)
k , u) + Ĵπb

H−1(Y
(i))}, where Y (i) is

the state after the first time step (for particle i). Usually, we choose as the base policy
a heuristic policy that is known to be reasonable. The choice of a base policy may
have a significant impact on the performance of the rollout policy. For more details
on how properly to choose a base policy, see [16].

4.3 On the Computational Burden of Our Approach

A primary concern in applying sophisticated methods, such as ours, is the com-
putational burden involved. It is instructive to compare the computational burden of
our scheme with that of conventional myopic schemes, such as CPA (Closest Point of
Approach), which we will use in our simulation experiments for comparison. As the
basis of this comparison, we first note that the computational requirements in our
approach stem from three sources:

(1) the particle-filter algorithm for belief-state estimation,
(2) the selection of an action with minimum Q-value, and
(3) simulation runs for Q-value calculations.

The computational burden involved in item 1 above is required of any tracking
method that uses particle filters, including myopic approaches such as CPA. The
extent of this burden depends on the number of particles used in the filter. Of course,
with additional assumptions, the particle-filtering approach can be replaced by some
other, such as Kalman filtering (but this consideration applies to both our approach
and conventional approaches).

Item 2 above, which involves solving an optimization problem, is common to
both our approach and myopic approaches. The difference between the two is that the
objective function being optimized in our approach is given by the Q-values, whereas
in myopic approaches the objective function is some given (myopic) criterion. In the
case of CPA, this function is given by the distance between sensors and the estimated
target position. The fact that our approach involves solving an optimization problem
at every step, just like in myopic approaches, is a desirable consequence of Bellman’s
optimality equation (see Section 2). In either case, the computational burden required
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for this optimization depends on the size of the search space (the number of feasible
actions).

The third source of computational requirements in our approach is that of eval-
uating Q-values via Monte Carlo sampling. This is a computational burden that our
method has to bear, but one that is not present in conventional myopic methods
involving “simple” objective functions (such as CPA). A distinct advantage of Monte
Carlo sampling is that we can incorporate sophisticated objective functions, taking
into account factors that are not possible to account for analytically. Hence, my-
opic methods with complicated objective functions that are impossible to evaluate
analytically may also take advantage of Monte Carlo methods. In this case, the com-
putational burden becomes comparable to that of our method. Similarly, in (rare)
situations where the Q-values in our method can be computed analytically, the bur-
den of Monte Carlo sampling may be ameliorated. In either case, the computational
requirement in Monte Carlo sampling depends on the length of the simulation runs
and the number of samples needed for averaging. By controlling these quantities,
we can trade off the performance of the resulting policy for reduced computational
complexity.

5 Simulation Experiments

We evaluated our approach via simulation experiments. In our experiments, the
target-motion model is given by equation (3), with σx = σy = g T−1/2

s (g is the ac-
celeration of gravity), and there are M = 4 sensors available (sensor A, B, C, and D
with m = 1, 2, 3, and 4), with the observation map (5). The other parameters used in
our experiments are as follows: the sampling interval is Ts = 2 sec; the locations
of sensors are {(spx(1), spy(1)), (spx(2), spy(2)), (spx(3), spy(3)), (spx(4), spy(4))} =
{(0, 0), (−10, 30), (0, 60), (10, 30)} (km, km); the limits of the Doppler blind-zone for
all sensors are B0 = 100 km/h; and the probabilities of detection for the sensors are
all equal: Pd = 0.9.

We compare the performance of our rollout policy to the commonly used CPA
(Closest Point of Approach) policy. CPA, selecting the closest sensor to the target
estimate, is a “greedy” approach that does not take into account the sensor power
consumption or the sensor error statistics. We consider two scenarios. In scenario 1,
we assume that one of the sensors consumes much more energy than the other three,
and that the error statistics for all the sensor measurements are the same: σr = 250
m, σṙ = 3 m/s, and σθ = 1o. Because our rollout policy takes this information into
account, it can avoid selecting the more costly sensor at appropriate times. Figures 1
and 3(a) illustrate the true trajectories of the target, the estimates of the target
positions, and the sequences of the selected sensors using the CPA policy and the
rollout policy, respectively. Figure 2(a) shows the accumulated tracking error and
power-consumption cost from the CPA and rollout policies. Here, sensor C is the
sensor that consumes much more energy than the other three.

In scenario 2, we assume that all sensors have the same power consumption but
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sensor B has much smaller measurement noise than others with its error statistics
being: σr = 50 m, σṙ = 0.6m/s, and σθ = 0.2o. As shown in Figure 3(b), our rollout
policy tends to select sensor B, which leads to a lower tracking error than that of CPA
(see Figure 2(b)). Here, the CPA policy is the same as in scenario 1, since sensor B
has never been selected.

In our experiments, it is not surprising that the rollout policy outperforms CPA.
What is significant here is that the rollout policy systematically and automatically
trades off tracking performance and sensor-usage costs. In scenario 1, we sacrifice
some tracking performance for large reductions in sensor usage costs. In scenario 2,
we reduce the tracking error with no increase in sensor-usage costs.

6 Conclusion and Future Work

In this paper, we formulated the problem of sensor scheduling for target track-
ing as a POMDP, and proposed a general approach that combines particle filtering
and Q-value approximation for solving the POMDP. As a particular instance of this
approach, we implemented policy rollout with particle filtering. Our experiments on
a simple sensor-scheduling problem involving multiple sensors for tracking a single
target illustrates the effectiveness of this general approach.

Applying our approach to more complicated sensor-scheduling problems is part of
our ongoing work. Specifically, we are currently investigating sensor scheduling prob-
lems with multiple targets and the selection of multiple sensors. For such multiple-
target multiple-sensor scenarios, the state dynamics and observation map need to
be extended accordingly. For the particle filter, we have some options: we can either
construct a single particle filter for all targets or construct one particle filter for each
target. The particle-filter algorithm and the Q-value approximation procedure remain
the same, except with higher dimensions. The main additional feature needed in the
multiple-target case is to incorporate a data-association module to decide which tar-
get is associated with each observation. Data association algorithms, such as JPDA
(Joint Probabilistic Data Association), have been studied extensively. Our concern
is simply to incorporate such algorithms into our approach. This turns out to be
straightforward for the case of JPDA. For extensions of our approach involving the
selection of multiple sensors, we also need to do sensor data fusion. This too is an
area with an extensive literature from which to draw.

We can include time-varying and frequency-varying jamming sources into the
state model by representing unobservable jamming intensities as additional state com-
ponents. Similarly, we can incorporate measurements of jamming intensities into the
observation model. This will enable us to deal with jamming, but will also impose
additional costs. We expect these additional costs to be proportional to the number
of jamming parameters.

A phenomenon known as “ghosting” is an important issue in multi-sensor arrays
where two or more radar sensors, each limited in range resolution, interrogate an
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environment containing two or more targets. 1 The ghosting phenomenon can cause
a multi-sensor array to generate apparent target detections where there is no target.
To deal with ghosting, a number of techniques have been proposed [18]. Typically,
a “deghosting” system consists of an angle-only tracking filter, a triangulation range
estimator, and a hypothesis test to determine if there are ghosts. Our method can
handle ghosting by incorporating a particle filter to estimate true angles, angle veloc-
ities, and target ranges based on angle measurements, and perform hypothesis testing
to eliminate ghosts.

Another direction for future research is to apply our work to a more general
sensor-management problem, which includes sensor geometry control, sensor band-
width allocation, sensor mode switching, as well as sensor scheduling. We may also
consider integrating constraints into our POMDP formulation, such as battery capac-
ity, load balancing, and bandwidth limits.
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Abstract
The application of tree-based classifiers to automatic target recognition (ATR) and other clas-
sification problems is studied. The described work builds on a previous DARPA effort in which
binary-tree classifiers were applied to ATR with range-doppler returns as input. The feature vectors
required by the classifier are found during training by using an application of the local discriminant
basis (LDB) wavelet-based technology. The extension of the LDB binary-tree ATR method to ISP
is described in detail in this document. The fundamental idea is to connect a set of binary-tree
classifiers in such a way that decisions at ambiguous nodes are resolved by requesting the best
new measurement or statistic from the available sensor(s). In this way, the resulting binary hyper-
tree classifier can have performance comparable to the supertree classifier that is informed of all
sensor measurements but with an average input-data requirement that is substantially reduced by
requesting only that data which is most relevant to the current point in the decision process.
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1 Introduction

Automatic accurate determination of a radar target’s type finds important application in tactical
military situations. It may also have application in commercial aviation and search-and-rescue op-
erations. More generally, automatic target recognition (ATR) is a specific example of an automatic
M-ary classification problem [3]. Such problems can be found in many scientific and technological
areas, such as type classification of RF signals, celestial objects, material compositions, tumors,
heart diseases, bird calls, whale songs, etc.

In this report, we document progress on the development of a family of classification methods
that integrate classification (processing) with measurement (sensing). The basic idea is to construct
a classifier that first operates on a limited initial data set. If the classifier cannot produce a decision
that has high quality (confidence), it requests the sensor measurement whose content will most de-
cisively resolve the classification ambiguity. This iteration continues until a high-quality decision
is reached or there are no further measurements available that can help reduce decision ambiguity.

Our specific approach relies on binary-tree classifiers. In particular, we build on the work
we performed under the DARPA TRUMPETS program [2], in which we developed novel binary-
tree classifiers for range-doppler inputs. The input-data statistics used to make the decision at
each node are wavelet-based and the local discriminant basis (LDB) methodology [4] is adapted
to find the best set of � such statistics independently for each node. This methodology can be
viewed as a form of wavelet-based compression in which only the most discriminant portions of
the data are retained, rather than those that yield the best reconstruction fidelity. In the present
work, we develop an ISP classification framework in which collections of binary trees are joined
together to form binary hypertrees. Each constituent binary tree in the hypertree is associated with
a particular kind of sensor or sensor-target geometry. When an ambiguous node is reached during
tree traversal for classification, the classifier jumps from the current tree to the tree that can best
resolve the ambiguity. This may necessitate obtaining a new sensor output. Thus, the ideal is that
the minimum amount of data is collected for the problem at hand and average performance for the
hypertree is much better than for any single constituent tree.

The remainder of this document is organized as follows. The basic mathematical framework
for ISP-enabled iterative classification (ATR) is presented in Section 2. This framework includes
definitions of several tree-based classifiers. The concepts of operation for the various classifiers
are described in Section 3 and an approximate performance analysis is provided in Sections 4 and
5. Algorithms for classifier construction and operation are provided in Section 6. An illustrative
(toy) problem is examined in Section 7, and the applicability of the approach to a wide variety
of classification problems and classifier structures is described in Section 8. Finally, conclusions
are drawn in Section 9. In a later stage of this work, a companion report will provide detailed
simulation results for the classifiers defined and described herein.

2 Mathematical Framework

In this section we present the basic mathematical definitions required to study the proposed tree-
based classifiers. In subsequent sections we introduce several propositions and further definitions.
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Figure 1: Graphical depiction of a generic binary tree for tree parameter
��� �

.

Definition 1 (Classifier Input Data (CID)) The CID quantity � is a vector or matrix that con-
tains measurements obtained by sensing the environment in some manner and optionally process-
ing this sensor data. � is then used as input to a classifier. �
Definition 2 (

�
-Class Problem) Given class-membership labels

�����������	�
� �
, and at least one

CID � , determine the class label
��

that corresponds to the CID,
�� ���� ��� , ������ ��������������� ��� .

The function
���� � represents the classifier. �

Definition 3 (Binary Tree) For the dyadic number
�

, a binary tree is a collection of
� � � �

nodes
with a specific node-connection topology. The root node is node number one and has two children.
The final

�
nodes are childless. All other nodes have exactly one parent and two children. Each

node is the child of only one parent. Node connections and numbering are as shown in Figure 1.
The tree is said to be balanced if the number of nodes at level ! is twice the number of nodes at
level ! � � for each tree level greater than zero. Otherwise, the tree is unbalanced. �
Definition 4 (Decision Node) A decision node in a binary tree with parameter

�
is any node

except one of the final (childless)
�

nodes (see Figure 1). �
Definition 5 (Terminal Node) A terminal node in a parameter-

�
binary tree is any node that is

not a decision node. �
Definition 6 (Binary-Tree Classifier (BTC)) A binary-tree classifier is a binary tree for param-
eter
�

such that each node is associated with a vector-valued measurement on the CID � and a
binary decision between two mutually exclusive groups of class labels each called a superclass.
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�����
.

The superclasses for node � derive from splitting the inherited class label set from the parent of
node � into two nonempty and disjoint sets. The average measurement vector value for the left
class is denoted by � and that for the right by � . The length of the measurement vector for all
nodes is denoted by � . The BTC definition is illustrated by Figure 2. �
Definition 7 (BTC Node Ambiguity) For a BTC decision node � , the ambiguity ��� is defined by

��� � �� �	� ��
 � � �
where � � � �������� ��� ��� ��� � �

� ��� � � �����
�� �
�����

����
� �����
��� � �

Therefore the node ambiguity is a simple function of the correlation coefficient (CC)
� � between

the left and right feature vectors for node � . �
Definition 8 (Node Descendents) The descendents of binary-tree node � are all nodes that can
be reached from � by traversing the tree starting at � . The descendents of the root node (node one)
are all nodes other than node one. The set of descendents for a terminal node is empty. �
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Definition 9 (Average Downbranch Ambiguity) Let BTC node � have � descendents
� ��� ���� ��� .

Then the average downbranch ambiguity (ADA) for node � is

� � � �
� 
 � � � � 


�� �
��� � ���	� �

Therefore the total BTC ambiguity is � � . �
Definition 10 (Corresponding Nodes) Let � � and � � denote two distinct BTCs and let � � and � �
denote decision nodes from � � and � � , respectively. If the union of the left and right superclasses
for nodes � � and � � match, then these two nodes are corresponding. If the superclasses are equal,
then the nodes are equivalent. Note that the binary-tree parameters

� � and
� � for � � and � � need

not be equal. �
Definition 11 (Binary Hypertree) Let

� �	� � �� ��� denote a set of � binary trees with identical pa-
rameters

�
. Associate with each node � in each tree � an index in the set

� ���������	����� � � and a node
index. Then this node � in tree � is said to contain a pointer to the indexed tree. The collection of
binary trees so indexed is called a binary hypertree. �
Definition 12 (Binary Hypertree Classifier (BHC)) Let 
 denote a binary hypertree with �
constituent binary tree classifiers each with parameter

�
and each addressing the same classi-

fication problem. Assign the node pointers for each node such that the node points to the BTC
with minimum ambiguity-corresponding node. To classify a CID, select an initial constituent BTC.
Use the node pointers to switch constituent trees whenever a node does not point to itself. Upon
switching to a BTC, if the CID for that BTC has not been obtained, direct the appropriate sensor
to obtain the data and then proceed. Figure 3 depicts graphically a BHC for � ���

and
� � �

.
Hypertree indices for decisions nodes 1, 2, and 4 are also shown in the figure. �
Definition 13 (Binary Supertree Classifier (BSC)) A binary supertree classifier is a BTC for
which the CID is multimodal. That is, the CID is a concatenated or otherwise stacked set of
separate (distinct) CIDs,  � ����� ���� ��� . The BSC can be viewed as the binary-tree classifier that
operates on all available sensor outputs. �

3 Concept of Operations

We will provide detailed algorithm statements for classifier construction and operation in Section 6.
In this section we provide a high-level overview of the operation of the three main classifier types—
BTC, BSC, and BHC—to provide sufficient context for the performance analysis of Sections 4 and
5.

Binary Tree Classifiers.
A typical binary tree classifier (BTC) is shown in Figure 2. This kind of classifier is constructed by
obtaining a set of training data for one CID type and all classes and applying the LDB machinery
of [2]. The resulting classifier must operate only on the CID type with which it was created. To
operate the classifier, we begin in node one, compute the correlation between the measured feature
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and the left and right stored features and take the path out of the node indicated by the larger
correlation. This is continued until a terminal node is reached.

Remark 1 If the CID type is not sufficient to render the total tree ambiguity � � small, then average
classification performance will likely be poor.

Binary Supertree Classifiers.
A binary supertree classifier looks much like the BTC of Figure 2. The difference is that the input
is a collection of CIDs of distinct types. The classifier is constructed by obtaining a set of training
data for all CIDs of interest and all classes, and then applying the same LDB machinery as used for
the BTC. If the set of CID types is exhaustive for a particular problem of interest (no more can be
obtained from existing allocated resources), then the performance of the BSC sets an upper limit
on the performance of the BTC.

Remark 2 If the collection of employed CID types is not sufficient to render the total tree ambi-
guity � � small, then BSC performance will likely be poor. This means that the designated CIDs are
inadequate for the problem at hand.

Binary Hypertree Classifiers.
A binary hypertree classifier is shown in Figure 3 for

�����
and � � � . This kind of classifier is

constructed by obtaining the same training data as used in the BSC, that is,
�

sets of CID data for
each of the

�
classes, and then constructing at least one BTC for each of the

�
CID types. The

BTCs are linked together as in Definition 12. To operate the classifier, choose an initial constituent
BTC and obtain its CID. Traverse the BTC, jumping to another BTC whenever a decision node is
encountered that does not point to itself. For every jump to another BTC, obtain the corresponding
CID if it has not already been obtained during the traversal of the hypertree.

Remark 3 The benefit of using a BHC is that BSC performance can in principle be achieved
without the cost of routinely obtaining all

�
CID types for each traversal of the tree.

4 Analysis for Balanced Trees

In this section we present some analysis results for the specific case of balanced trees (see Defini-
tion 3). Unbalanced trees are addressed in Section 5.

Each decision node in a BTC or BHC must make a binary decision based on a vector of �
(wavelet) measurements on the CID. This decision is made by computing the correlation coef-
ficients (CCs) between the measured feature vector � and the left and right superclass average
feature vectors � and � ,

��� � � � � � � � �
��� � � � � � � � � �

If ���	�
��� , take the left decision path out of the node, else if �������� , take the right path, else flip a
fair two-sided coin to determine which path to take.
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If the CC between � and � is large and negative, the ambiguity will be close to zero. In this
case, if the CID corresponds to a class in

� ��������������� ���
(i.e., it is represented by the tree, not an

unknown class), then we expect the correct decision to be made at this node almost all of the time.
On the other hand, if the CC is large and positive, the ambiguity is close to one, and we

expect the decision to be incorrect about half the time on average. Let us represent the node error
probability as a function of the node ambiguity,��� � ��� ��� � ����� �
such that

� ��� � ���
and

� � � � ������� and
� � � � is continuous and monotonic on 	 � � ��
 , bounded below

by zero, and bounded above by one. An example is
� �� � �������

for which we have
��� � � � � � � ��� .

4.1 Binary Tree Classifier

We now compute the BTC probability of correct classification for class � � � ��������������� ��� . There
is only one path through a BTC that terminates at class � . Let the node sequence that defines this
path be denoted by

� ��� � � � ��� � � �������
� ��� � � � , where � ������� � � � � . This distinct path for class � is
associated with the sequence of ambiguities

� � ��� � ! � � ��� � " �������
� � � � � # � .
Proposition 1 (Error Performance for a BTC)
Given a

�
-class problem and a BTC associated with that problem, assume that the decisions at

each node in the path for class � are approximately independent. Then the average classification
error for the BTC is given by�$� ��% � � � � �

�
&� � ���

'
� � �(�

��� � � �)� � ��� � � �	� �+* � (1)

�
Proof. The probability of correct classification, conditioned on the true input class of � , is the
product of marginal probabilities of correct classification for each node in the path,� � �� � �-,.�
� � �(�

��� �0/ � ��� � � � � �(�
��� � � � ��� � ��� � � � �

� �(�
��� � � �1� � ��� ��� �	� � �

Thus, the conditional probability of error is given by�$� � �	� � � � ��32� �4, �	�� � � � � �� � �4, �	�
� � � �(�

��� � � �1� � ��� ��� �	� � �
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If we assume that the prior probabilities for the
�

classes are equal, then the total probability of
error is given by �$� ��% � � � � �

�
&� � ��� � � ���2� �-,.�
�

� �
�

&� � ���
'
� � �(�

��� � � �)� � ��� � � �	� �+* � �

Note that the probability of error for the BTC is completely characterized by the node ambigui-
ties. The limiting cases of completely ambiguous and unambiguous BTCs are treated in the next
proposition.

Proposition 2 (BTC Error Probability Limiting Cases)
Given a BTC with parameter size

�
, if all node ambiguities are zero, then the probability of error

for the BTC is zero. If all node ambiguities are equal to one, then the probability of error is equal
to
� ��� � � � � . �
For a BTC, the location in the tree of highly ambiguous nodes has a strong influence on perfor-

mance. This is easy to see since the various decision nodes are components of different numbers of
paths. If the root node is highly ambiguous with � � � � , then all paths begin with an ambiguous
decision and the probability of error for the tree is 1/2. The location of the ambiguous node is
grossly characterized by its level in the tree (see Figure 1).

Proposition 3 (BTC Error as Function of Ambiguous Node Position)
Suppose we have a BTC with parameter

�
. Node � at tree level ! has ambiguity ��� � � and all

other decision nodes have zero ambiguity. Then the probability of error for the BTC is
����� ��� ���

. �
The average error can be minimized by ensuring that high-level nodes (small ! ) have minimum

ambiguity. One way of doing this is by selecting the decision-node superclasses to push ambiguity
downward in the tree. Other methods include extending the BTC to a BHC.

4.2 Binary Hypertree Classifier

For BHCs, each node in each of the constituent BTCs contains a pointer to the constituent BTC
with minimum-ambiguity corresponding node. Therefore, the ambiguity � � � � � seen at node ��� � �
for the path corresponding to class � in a BTC is replaced by% � ��� � �	��
����  � � � � � � � � ��� � �
where

�
indexes the constituent BTCs with nodes corresponding to � � � � .

Proposition 4 (Error Performance for a BHC)
The average error probability for a BHC is given by�$� ��% 
 � � � �� &� � ���

'
� � �(�

��� � � �1� ��% � ��� � � � * �
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�
The error performance for a BHC is completely characterized by the minimum-ambiguity corre-
sponding nodes.

Error Bounds.
Let us now compute some bounds on the performance of a BHC. The general expression for the
probability of error for the BHC is ��� � % 
 � � � �� &� � ��� ��� � �
� �
where �$� � �	� ��� � �(�

��� � � �1� ��% � ��� � � � �
Now

����� � � � � � so that ����� ��% � ��� � � � �
or �(�

��� � � �1� � % � � � �
� � ��� �1� ��� � � �
where � � � ����� � ���
	� � � % � � � �
� �
Therefore

� �(�
��� � � �1� � % � � � �
� ��� � � � �1� �� � � � ��$� � �	��� � ��� � �1� ��� � � � � �

Finally, then, the bound on the total error probability is given by�$� ��% 
 � ���
�
�

&� � ��� 	 � � � � � � �� � � � � 

� �
�

&� � ��� � �� � � �
� � ����� � �

where
� �� ����� � ���
	 � � ��� � � � . So the average BHC error probability is bounded away from zero

by the node with the largest minimized error probability over all constituent BTCs in the BHC.
When the error function

� � � � is a nondecreasing function of the ambiguity, then
� �� � ����	� � � � � .

That is, the maximum error probability corresponds to the maximum ambiguity.
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Remark 4 The bound on error performance for the BHC suggests that to improve performance,
find the most ambiguous node in the BHC paths and attempt to find a new CID, new vector-
valued measurement on an existing CID, or new superclass definitions so as to result in a smaller
ambiguity for this node. The minimum change to the BHC is then to have it point corresponding
nodes to the new BTC.

4.3 Binary Supertree Classifier

Suppose we have
�

distinct CID types available for use by our classification system. These
could correspond to different radar waveforms (pulse widths), frequency bands, look directions,
or sensor modality, such as optical, infrared, SAR, etc. A sample set of CIDs can be represented
by the collection

� � � ���� ��� , where each � � is a vector or matrix of data obtained from a particular
active or passive sensing of the environment. A binary supertree classifier (BSC) is a binary tree
classifier that takes as input this set of

�
CIDs (see Definition 13). Since the BSC is a BTC, its

performance is characterized by Proposition 1.
The idea behind the BSC is that of a maximally informed classifier. Its performance serves

as an upper limit on the performance of any other tree based classifier since it uses all available
information in training and in operation.

Of course, the drawback of a BSC is that it might require an enormous amount of input data if
the number of distinct CID types is large and the classification problem is difficult (different classes
require distinct kinds of CIDs to achieve good performance). What we would like is the perfor-
mance of the potentially impractical BSC with the relatively modest operational requirements of
the BHC.

4.4 Relations Between Classifiers

In this section, we present analysis results pertaining to the relationships between the three tree-
based classifier types. One of our aims is to determine the requirements on a BHC for exact corre-
spondence between it and a BSC. Another aim is to determine error-performance requirements for
the constituent BTCs of a BHC for good BHC performance: How good do the BTCs need to be to
guarantee good BHC performance?

4.4.1 Relations Between BSCs and BHCs

From an intuitive point of view, the performance of a BSC should lower bound the performance of
any BHC for the same problem because the BSC has all available CID types and can process them
jointly at each decision node.

Let us first consider the class of BSCs for which the measurements made at each decision node
require only one CID type; that is, each � -vector of measurements at node � requires only one
element of the multimodal CID  � ��� � ���� ��� . For this class of BSCs, we expect that the BSC
performance can be exactly achieved by a relatively simple BHC. These considerations lead to the
following two definitions.
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Definition 14 (Reducible Binary Supertree Classifier) Let the BSC � correspond to the multi-
modal CID  � ����� ���� ��� . � is reducible if the measurement vector for each decision node � is
associated with only one element of  . Otherwise the BSC is irreducible. �
Definition 15 (Simple Binary Hypertree Classifier) Let the multimodal CID be represented by
 � ��� � ���� ��� . An associated BHC is called simple if all constituent BTCs have CIDs that corre-
spond to a single element of  . Otherwise, if at least one BTC has a multimodal CID, the BHC is
called complex. �

Let’s also formalize the notation for describing the required CID elements at a decision node.

Definition 16 (Mode Subset) Let � represent a decision node of an irreducible BSC that is as-
sociated with the multimodal CID set  � ��� � ���� ��� . The � -vector of measurements associated
with � requires at least one element of  and at most all

�
elements. Let � represent the vector of

indices in
� �������	������� � �

that are actually required by node � . � is called the mode subset vector.
�

The performance of any reducible BSC can be achieved by a simple BHC, which is the subject
of the following proposition.

Proposition 5 (Equivalence Between Reducible BSC and Simple BHC)
Let � represent a reducible BSC associated with the

�
-class problem

� � and the multimodal CID
set  � ��� � ���� ��� . Then there exists a simple BHC 
 for

� � associated with  such that
�0� � � � ���� � 
 � . Moreover, there are

�
BTCs in 
 . �

Proof. (By construction.) For each � � �������	������� � , construct a BTC � � for
��� � �

such that the
superclasses for each node � in each BTC match those in � for node � . Therefore each decision
node in the BSC has

�
corresponding nodes in the set of

�
BTCs. Consider decision node � in

� . Since � is reducible, the feature vector for this node can be obtained from measurements on
one of the CID types, say

�
�
. For BTC �

�
, associate the measurement specification, � , and � for

node � in � with node � in �
�
. For all � � , point node � to BTC �

�
. Repeat this procedure for all

decision nodes in � . The resulting set of
�

linked BTCs forms a BHC 
 . By construction, each
possible traversal of � corresponds to an identical traversal of 
 , and there are no other traversals
in either classifier. Therefore,

�0� � � � � �$� � 
 � .
�

Even when a BSC employs multimodal measurements at some or all decision nodes, its perfor-
mance can still be obtained by using a properly designed BHC. If most or all of the decision nodes
in the BSC use measurements that require most or all of the elements of  , then there may be no
operational benefit to using the equivalent BHC. But when only a few nodes require multimodal
measurements, there can be great operational and training advantages to using the BHC over the
BSC.

The relationship between irreducible BSCs and complex BHCs is summarized in the following
proposition.

Proposition 6 (Equivalence Between Irreducible BSC and Complex BHC)
Let � represent an irreducible BSC associated with the multimodal CID set  � ��� � ���� ��� and
a
�

-class problem
� � . Then there exists a complex BHC 
 associated with  and

� � such that��� � � � � �$� � 
 � . �
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Proof. (By construction.) First consider the decision nodes in � that have mode subset vectors
with length one, say

��� � ���� ��� . For each
� �

, construct a BTC � � such that its node
� �

performs the
same operations as � on the CID associated with

� �
; point node

� �
in � � to � � . For the remaining� � �

BTCs, point their
� �

nodes to � � . Now consider the decision nodes in � for which the mode
subset vector has length greater than one, say,

��� � ���� ��� . For each of these nodes, construct a new
BTC in the following way. For node

� �
, define a multimodal CID  � � ���

�
�
� �
	�� , where � � is

the mode subset vector. Let � �� denote the BTC associated with
� �

. The CID for � �� is  � , and
for node

� �
in � �� , perform the same operations on  � as in � . Point the

� �
nodes in all

�
new

BTCs to � �� . If
� � �

, then examine new BTC � � to determine how to point the single-mode
nodes in the

�
new BTCs. Similarly, for the

�
new single-mode BTCs, examine � �� to determine

how to point the multimodal nodes. The resulting
� 
 �

BTCs define a complex BHC 
 since� � � . By construction, each possible path through � has an identical path through 
 . Therefore,��� � � � � �$� � 
 � .
�

Remark 5 For BSCs that are only mildly irreducible (meaning that
�  �

), the number of
constituent BTCs in the BHC will be only slightly larger than

�
, yet the performance will be

equal to that of the BSC.

4.4.2 Approximation of BHCs by BHCs

We have demonstrated that any BSC can be exactly represented by a BHC. Since the computa-
tional and storage burden of the BHC is directly related to the number of constituent BTCs and
their CIDs (multimodal or single-mode), we are now interested in the possibility of approximating
complicated BHCs with simpler ones. So we investigate the performance penalty in approximating
one BHC by another.

Incremental Approximation.
Let us first consider the smallest possible difference between two BHCs: a difference in a single
decision node. For example, suppose that in BHC 
 � , node � obtains its minimum ambiguity for
constituent BTC � , which has a multimodal CID. Let the dimension of the mode subset vector for
node � in BTC � be � � � . Consider now another BTC with the same superclasses as � but for
which the CID has dimension � � � . Form a new BHC, 
 � , for which all corresponding nodes
with indices � point to this new, lower-dimensional BTC. All other corresponding nodes (those
with indices other than � ) in all trees of 
 � take the same values as their counterparts in 
 � . Thus,
the only difference between 
 � and 
 � occurs for decision node � .

Proposition 7 (Incremental BHC Error Performance)
Let 
 � and 
 � be BHCs for a given

�
-class problem and multimodal CID  � ��� � ���� ��� . Let


 � and 
 � differ only in a single decision node � for which the minimum ambiguity over all
corresponding nodes with index � is larger in 
 � than in 
 � . Then the performance difference for
the two BHCs is given by ��� � 
 � � � �$� � 
 � ��� � � % �� � � � � % ����

�
� � � �

where
% �� and

% � are the minimum ambiguities for 
 � and 
 � , respectively, at node � , and ��� � �
denotes the tree level of node � . �
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Proof. Recall that the performance of a BHC is given by�$� � 
 � � �� &� � ���
'
� � �(�

��� � � �1� ��% � ��� �
� �+*
where � �3����� � � � � , % � ��� � is the minimum-ambiguity node over all constituent BTCs for node � � � � ,
which is the � th node encountered along the unique path to class � . The performance difference is
computed straightforwardly as follows��� � 
 � � � �$� � 
 � � � �

�
&� � ���

'
� � �(�

��� � � � � � % �� � � � � � * � �� &� � ���
'
� � �(�

��� � � � � ��% � ��� �	� �+*
� �
�

&� � ���
' � �(�

��� � � � � � % �� � � � � � 
 �(�
��� � � �1� � % � � � �	� � *

� �
�

&� � ��� � � � % �� � � � � � � � � % � � � � � ��� (���
�
�
�
� � � � ��% � ��� �	� �

Since the node in question is at level ��� � � , it is part of exactly
� ��� � � � �

paths. For all other
paths through the BHC, the difference between 
 � and 
 � is zero. Therefore, the performance
difference is given by��� � 
 � � � �$� � 
 � � � �� � � ��� � � � % �� � �1� ��% ��� � (���

�
�
�
� � � � � % � � � � � � �

where � denotes the set of class indices for which the unique path from root node to terminal node
includes node � . If the BHC 
 � is sufficiently well constructed and the CID is sufficient for good
classification performance, then we make the approximation(���

�
�
�
� � � � � % � � � �
� � � ���

which implies that ��� � 
 � � � �$� � 
 � ��� � � % �� � � � � % ����
�
� � � � �

Remark 6 Proposition 7 implies that low-dimensional node approximations are better suited, in
general, to parts of the tree that are nearer the terminal nodes (larger � � ).

Now let’s look at a more general approximation of a BHC by a simpler, lower-dimensional
BHC. For BHC 
 � , the minimum decision node ambiguities are denoted by

% � � � � and for BHC

 � , which approximates 
 � , the ambiguities are denoted by

% �� � � � .
Proposition 8 (Approximation of a BHC)
Let the BHCs 
 � and 
 � correspond to the same

�
-class problem and multimodal CID  ���� � ���� ��� . 
 � approximates 
 � by employing lower-dimensional CIDs at one or more nodes, or
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by using a smaller value of � at one or more nodes. Assume that the minimum decision-node
ambiguities for 
 � lower bound those for 
 � : % �� � � � � % � � � � � Then��� � 
 � � � �$� � 
 � � � �� &� � ���

' ��
� ��� � � ��% �� ��� � � � � � % � � � � � � �(�

��� �
���
� � � � � � ��% � ��� � � � * �

�
Proof. From the proof of Proposition 7, the performance difference between 
 � and 
 � can be
expressed as �$� � 
 � � � ��� � 
 � � � �� &� � ���

' �(�
��� � � �1� � % � � � � � � � �(�

��� � � � � � % �� � � � � � * �
By the monotonicity of

� ��� � , we have� � % �� � � � � � � ��% � ��� � ����� � � �
that is, the error probabilities for 
 � are no smaller than those for 
 � . It is convenient to represent
the errors for 
 � in terms of those for 
 � plus an additional term,� � % �� � � � � ��� � % � � � �
� 
�� � � � � �
where � � � � � � �

. Then the error difference can be represented by��� � 
 � � � �$� � 
 � � � �� &� � ��� �(�
��� � � � � � % � � � �
� � � �(�

��� � � �1� ��% � ��� �
� � � � � � �	� �
By computing the product involving � � � � � and retaining only terms that are independent of � or are
linear in � , we obtain��� � 
 � � � �$� � 
 � � � �� &� � ���

� ��
� ��� � � ��� � �( ���

� � � � � � ��% � ��� � � ��� �
which is the desired result.

�

4.4.3 Relations Between BHC and its Constituent BTCs

In this section, we consider the requirements on the constituent BTCs of a BHC for good BHC
performance. Since the BHC performance depends only on the minimum-ambiguity corresponding
decision nodes, it appears that excellent BHC performance may be had as long as there is a BTC
with low ambiguity for each decision node. The BTC nodes that do not achieve the minimum
ambiguity are irrelevant to BHC performance and can be highly ambiguous. These considerations
suggest the definition of a peculiar kind of BTC that is good at making only a single decision.

Definition 17 (Savant Binary Tree Classifier) A BTC for a
�

-class problem is � -savant if one of
its decision nodes has ambiguity less than or equal to � and all other decision nodes have ambiguity
greater than or equal to

� � � . �
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The performance for a savant BTC depends strongly on the position of the unambiguous node
in the tree, as shown in the following proposition.

Proposition 9 (Performance for a Savant BTC)
Suppose we have a savant BTC � with parameter � and the unambiguous node is at tree level
� � � � � � �����	���
� � � ��� . Then the performance for � is given by��� � � � � �

� �
�
�
� �
�
� � ��� � � � � 
 � ��� �

provided that
� � ��� � � and

� � � � � ��� � ��� . �
Proof. The low-ambiguity node for � must be part of exactly

� ��� � �
paths through the tree. From

(1), we can approximate the performance for � as follows��� � � � �
�
�

' �� � � !
�
� � �(�

��� � � � � � � � ��� � � 
 �� � � "
�
� � � � � � � ��� � �(���

�
�
� � � � � � � � � � ��� � � * �

where , � � , ����� � ��� � �
and , � � , � � ��� � �

. For small � , � � � � ��� � ����� and
� � ��� � � so that��� � � � � �� � � ��� � ��� � � � � � � � �� � � � 
 � ��� � � � � ��� � � � � � �� � � � � ��� �

After further simplification, we arrive at��� � � � � �
� �

�
� 	 � � � � ��� � � � � 
 � � 
 � �

Remark 7 The limiting cases for the performance of a savant BTC correspond to � � � �
and

� � � � � � . For the former, the small-ambiguity node is the root node and we have
��� � � � � � � � � ,

which is slightly better than the worst case in which all nodes have high ambiguity. For the latter
case, the small-ambiguity node is just above the layer of terminal nodes and

��� � � � � � � � ������ � �
which is, again, slightly better than the worst case.

Now if a BHC is made up of savant BTCs and every decision node in the BHC is covered by
the unambiguous node for at least one of the BTCs, then we expect BHC performance to be very
good independently of the poor performance of the BTCs. This leads to the definition of a savant
covering.

Definition 18 (Savant Covering) For a
�

-class problem, consider the collection of � distinct
BTCs

� �
�
� �� ��� . If for each set of corresponding nodes that are defined by this collection, there is

at least one BTC with node ambiguity less than or equal to � , then the BTC set is called a covering.
If in addition the � BTCs are each � -savant, then the covering is an � -savant covering. �
Proposition 10 (BTC and BHC Performance for Savant Covering)
Let 
 represent a BHC for a given

�
-class problem and let

� �
�
� �� ��� represent the constituent

BTCs for 
 . If the BTCs form a covering with parameter � then the performance for 
 obeys the
following bound ��� � 
 � � � ��� � �1� � � � � � �
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Moreover, if the covering is � -savant, then the performances for the constituent BTCs are bounded
by ��� � � � � � � � �� � � � �

�
Proof. Since the constituent BTCs form a cover with parameter � , the minimum ambiguity for any
set of corresponding nodes is less than or equal to � . Therefore, performance for the BHC is given
by ��� � 
 � � �� &� � ���

'
� � �(�

��� � � �)� � % � � � � � � * �
where each

� � % � � � �
� ��� � ��� . Thus, we can obtain the desired result in the following way

� � ��% � ��� �
� � � � � ���� �1� ��% � ��� �
� � � � � � ����(�
��� � � �1� � % � � � �	� � �

�(�
��� � � �1� � ��� � � � � � � � ��� � �

� �(�
��� � � �1� � % � � � �	� � � � � � �1� � ��� � �

�
�

&� � ��� 	 � � �(�
��� � � �1� ��% � ��� � � � 
 � �

�
&� � ��� 	 � � � � � � � ��� � � 
��� � 
 � � � ��� � �)� � ��� � � �

We have established the performance bound for the hypertree classifier for any � covering. If the
BTCs form an � -savant covering, then�$� � � � � � �

� �
�
� �
�
��� �

�
� �
�
� � � � � � � � 
 � ��� �

where � � � � � is the level of the � -ambiguity node in tree �
�
. The two performance extremes corre-

spond to � � � � � � �
and � ��� . Since the performance for ��� � � � � �

is better than that for any
other � � � � � , we have �$� � � � � � �� 	 ��� � 
 � � 
 �
thereby establishing the proposition.

�

Remark 8 Proposition 10 implies that a high-performance classifier can be constructed from a
set of classifiers with very poor performances provided that these classifiers can each make a single
low-error decision.

For the case in which constituent BTCs are not savant, we have the following proposition.
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Proposition 11 (Bounded BTC Node Ambiguities)
Let the BHC 
 have constituent BTCs

� �
�
� �� ��� . If the maximum node ambiguity for each �

�
is

no larger than � � � � � 	 � � � � ��� � ��� � 

, where � � � ��� � � � � , then the performance for 
 obeys��� � 
 � ��� . �

Proof. It follows easily from the premises that the performance for 
 is bounded by��� � 
 � � � ��� � �1� � � � � � �
Setting

�
equal to the right side of this inequality yields the solution for � ,� ��� � � � � ��� � ��� � ��� � � � �

5 Analysis for Unbalanced Trees

What are the expected conceptual differences between the performances of balanced and unbal-
anced tree classifiers? Because the unbalanced trees have more degrees of freedom in superclass
selection, one would think that the performance for the best unbalanced tree would lower bound
the performance for the best balanced tree.

In this section, we revisit the propositions of the previous section on balanced trees to determine
the major mathematical differences between the two tree types.

Like balanced trees, we impose the constraint that the superclasses at each decision node be
mutually exclusive. Unlike balanced trees, the sizes of the superclasses at a node do not have to be
equal. Therefore, there is still only a single path through the tree from root node to terminal node
for each class. The length of each path is now a function of the class label � . For example, consider
the unbalanced tree in Figure 4. The path lengths are denoted by � � �
� and range from 2 to 5.

As before, we assume that the successive decisions made at the decision nodes are approxi-
mately independent. The sequence of nodes visited as the tree is traversed along the unique path
from root node to terminal node for class � is, as before,

� � � � � � .
Proposition 12 (Unbalanced BTC Error Performance)
The average error performance for an unbalanced BTC � that corresponds to a

�
-class problem is

given by ��� � � � � �� &� � ���
��
� � � � � �(�

��� � � �)� � ��� � � �	� ���� �
Proof. The proof is similar to that for Proposition 1.

�

Next we revisit the limiting cases of the basic BTC performance formula.

Proposition 13 (Unbalanced BTC Error Probability Limiting Cases)
Given an unbalanced BTC with parameter size

�
, if all node ambiguities are zero, then the proba-

bility of error for the BTC is zero. If all node ambiguities are equal to one, then the probability of
error is equal to

� ��� � � � � . �
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Figure 4: Illustration of the variable tree-traversal path length in an unbalanced tree classifier.
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Proof. TBD.

�

Thus, the limiting cases for balanced or unbalanced BTCs are the same. We now turn to the
more interesting problem of determining BTC performance as a function of the position of a single
ambiguous node. Our general expression for the probability of error is given by��� � � � � �� &� � ���

��
� � � � � �(�

��� � � �)� � ��� � � �	� ���� �
From Figure 4, we see that the tree level of an ambiguous node does not uniquely determine how
many class paths are influenced by the node. Thus, we cannot find a formula for performance that
depends only on the node’s level. However, intuitively, the number of class paths is still important,
which leads to the following definition.

Definition 19 (Node Impact) The impact of a decision node � in an arbitrary BTC is the number
of terminal nodes in � ’s descendents. Thus the impact must be an integer between two and

�
.

Proposition 14 (Unbalanced BTC Error as a Function of Ambiguous Node Position)
For a

�
-class problem, let the unbalanced BTC � have a single ambiguous node � with ambiguity� � ��� and impact � . Then the error performance for � is��� � � � � � �� � �

Proof. The generic BTC performance formula is��� � � � � �� &� � ���
��
� � � � � �(�

��� � � �)� � ��� � � �	� � �� �
Denote by

���
the subset of class labels for which node � lies along the path leading to the label.

For all � not in
���

, the contribution to the error is zero since all nodes have zero ambiguity for
these paths. Thus, the performance is given by��� � � � � �� �� � &��

��
� � � � � �(�

��� � � � � � ��� � � �	� � �� �
Assuming that

� � � � ������� yields��� � � � � �
�

�� � &�� � � � � � � � ��� � � � � � � � � � � �
� �� � �

�

Remark 9 Note that the performance for an unbalanced BTC reduces to that for the balanced
case because the impact must be of the form � � � ��� � �

. Thus
��� � � ��� � � � � ��� � � � � � � � � �� ��� � � � ���

.
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Proposition 15 (Error Performance for an Unbalanced BHC)
The average error probability for an unbalanced BHC is given by��� � % 
 � � � �� &� � ���

'
� � �(�

��� � �	� � � �1� ��% � ��� �
� � * �
�

Proof. Similar to that for Proposition 4.

�

Proposition 16 (Reducible BSC and Simple BHC for Unbalanced Trees)
Let � represent a reducible unbalanced BSC associated with the

�
-class problem

� � and the mul-
timodal CID set  � ��� � ���� ��� . Then there exists a simple unbalanced BHC 
 for

� � associated
with  such that

��� � � � � ��� � 
 � . Moreover, there are
�

BTCs in 
 . �
Proof. Similar to that for Proposition 5.

�

Proposition 17 (Irreducible BSC and Complex BHC for Unbalanced Trees)
Let � represent an irreducible unbalanced BSC associated with the multimodal CID set  ���� � � �� ��� and a

�
-class problem

� � . Then there exists a complex unbalanced BHC 
 associated
with  and

� � such that
��� � � � � ��� � 
 � . �

Proof. Similar to that for Proposition 6.

�

Proposition 18 (Incremental Unbalanced BHC Error Performance)
Let 
 � and 
 � be unbalanced BHCs for a given

�
-class problem and multimodal CID  ���� � � �� ��� . Let 
 � and 
 � differ only in a single decision node � for which the minimum ambiguity

over all corresponding nodes with index � is larger in 
 � than in 
 � . Then the performance
difference for the two BHCs is given by��� � 
 � � � �$� � 
 � � � �� � � � % �� � � � ��% ��� � �
where

% �� and
% � are the minimum ambiguities for 
 � and 
 � , respectively, at node � , and �

denotes the impact of node � . �
Proof. Similar to that for Proposition 7, except the node impact determines the underlying perfor-
mance of the BTCs and BHC.

�

Proposition 19 (Approximation of an Unbalanced BHC)
Let the unbalanced BHCs 
 � and 
 � correspond to the same

�
-class problem and multimodal CID

 � ��� � ���� ��� . 
 � approximates 
 � by employing lower-dimensional CIDs at one or more nodes,
or by using a smaller value of � at one or more nodes. Assume that the minimum decision-node
ambiguities for 
 � lower bound those for 
 � : % �� � � � � % � � � � � Then

��� � 
 � � � �$� � 
 � � � �� &� � ���
�� � � � ��
� ��� � � � % �� � � � � �1� � % � � � � � � � � � �(�

��� �
� �
� � � � �1� ��% � ��� � � ���� �

�
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Proof. Similar to that for Proposition 8, except the sums over � have variable limits set by � � �	� .�

Proposition 20 (Performance for an Unbalanced Savant BTC)
Suppose we have an unbalanced savant BTC � with parameter � and the unambiguous node has
impact � . Let the set of class labels which have tree-traversal paths that do not contain the unam-
biguous node be denoted by � � and the rest by � � . Then the performance for � is given by��� � � � � �� '

��� �� ��� ! � � � � � � � � � � � � � �� � � " � � � � � � *
provided that

� � ��� � � and
� � � � � ��� � ��� . �

Proof. For any BTC, the performance formula is given by��� � � � � �� &� � ���
��
� � � � � �(�

��� � � �)� � ��� � � �	� ���� �
We can divide the sum over � into two components, one which contains a contribution from the
unambiguous node, and one which does not,��� � � � � �� �� �� � � ! � � � � � � �(�

��� � � �1� � � � � � � � 
 �� � � " � � � � � � � � ��� � (� �
�
� � � � � � � � � ��� � � � ��

where ��� denotes the index of the unambiguous node in the path
� � � � � � for class � . Note that, � � , � � , and , � � , ����� � . Straightforward algebra leads to the desired result.

�

Proposition 21 (Unbalanced BTC and BHC Performance for Savant Covering)
Let 
 represent an unbalanced BHC for a given

�
-class problem and let

� �
�
� �� ��� represent the

constituent BTCs for 
 . If the BTCs form a covering with parameter � then the performance for

 obeys the following bound ��� � 
 � � � ��� � �1� � � � � �� �
where � � � ���
	� � � �
� . �
Proof. By the definition of a cover, we have the fundamental inequality for all decision nodes in
the BHC

% � ��� � � � which, by the monotonicity of
� ��� � , yields

� � % � ��� �
� � � � ��� . We obtain the
following sequence of inequalities

� � � % � � � �	��� � � � ���� � � ��% � ��� �
��� � � � � ���� � � �(�
��� � � � � � % � � � � � ���

� � � �(�
��� � � � � � ��� �� � � �(�

��� � � � � � % � � � �	� ��� � � �1� � � � � � � � �
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� � � � �(�
��� � � �)� � % � � � � � � � � � � �1� � ��� � � � � �

� � � � � �(�
��� � � �)� � % � � � �
� � � � ��� � �1� � ��� � � � � �

�
�

&� � ��� � � � � � �(�
��� � � �)� � % � � � �
� � � �

�
&� � ��� � ��� � �)� � ��� � � � � �

��� � 
 � � �
�

&� � ��� � ��� � �)� � ��� � � � � � �
Since

� � ��� must lie between zero and one, we have

� � � � � ��� � � � � � � � � � � � � � � ���
and therefore that ��� � 
 � � �� &� � ��� � ��� � �1� � � � � ��� � �

Proposition 22 (Bounded Unbalanced BTC Node Ambiguities)
Let the unbalanced BHC 
 have constituent BTCs

� �
�
� �� ��� . If the maximum node ambiguity for

each �
�

is no larger than � � � � � 	 � � � � � � � ��� � � 
 , where � � � ���
	� � � �
� , then the performance

for 
 obeys
�0� � 
 � ��� . �

Proof. The proof is similar to that for Proposition 11.

�

6 Algorithms

In this section, we provide high-level algorithm statements for construction and use of the tree-
based classifiers. Construction consists of exploiting the LDB to automatically find the most dis-
criminating statistics in the training set. Classifier use simply means using the classifier to classify
a CID. We begin with some notation so that the algorithm statements are sufficiently concise.

6.1 Notation

We adopt a programming-style notation consisting of variables and their records. Let btc denote
a single binary tree classifier (BTC) and bhc denote a BHC. These trees are associated with the
following records.

btc.cidType A string or numeric indicating the type of input used to train the BTC. For example,
“range-doppler chips” or “optical image.”

btc.angle The viewing angle for the targets (equivalent to pose).
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btc.C The size of the classification problem addressed by btc.

btc.a The downbranch ambiguity for node 1 (root node ADA, this is the total tree ambiguity).

btc.index The unique index of the BTC (used when the BTC is a constituent tree for a BHC).

btc.n This is an array of node records, defined next.

n.index The index of the BTC node using standard top-to-bottom left-to-right numbering starting
with index 1 (see Figure 1).

n.inSuperClass An array of class labels (integers) that are associated with the decision to enter
the node.

n.leftSuperClass An array of class labels (integers) that correspond to taking the left path out of
the node.

n.rightSuperClass An array of class labels (integers) that correspond to taking the right path out
of the node. The union of leftSuperClass and rightSuperClass is inSuperClass for each
node.

n.A The ambiguity for node n.

n.u The right-path � -component feature vector.

n.v The left-path � -component feature vector.

n.wavelet String containing the wavelet class (mother wavelet type, e.g., coiflet).

n.w Specifies the � wavelet transform locations from which to obtain the desired � -component
feature vector for comparison with n.u and n.v.

n.minTree Index of the BTC (tree) with minimum ambiguity corresponding node.

n.ada The average downbranch ambiguity for the node.

n.leftNode Index of the node corresponding to the left path out of n.

n.rightNode Index of the node corresponding to the right path out of n.

n.parent Index of parent node for n (set to 0 for the root node).

bhc.numBTC The number of constituent BTCs in the BHC.

bhc.btc An array of numBTC BTCs.

bhc.C The number of classes in the hypertree (classification problem size).
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1. Obtain the training data sets for the
�

-class problem of interest
and specify the allowable set of wavelets.

2. Specify the input data type, generating btc.cidType.

3. Construct a binary tree with
����� � � � � 
 � levels.

4. For each decision node, select left and right superclasses.
Nominally, these are of equal size and consist simply of the
leftmost elements for the left superclass and the rightmost ele-
ments for the right superclass.

5. Find the LDB for each wavelet type and decision node in the
tree.

6. Select the most discriminating � elements of the most discrimi-
nating LDB for each node, generating btc.n.wavelet and btc.n.w
for each decision node.

7. Find the average value of the � LDB elements for each super-
class in each decision node, generating btc.n.u and btc.n.v for
each decision node.

8. For each decision node n, compute the ambiguity, generating
btc.n.A.

9. For each decision node n, compute the average downbranch
ambiguity btc.n.ada.

Figure 5: The algorithm for constructing a BTC.

6.2 Classifier Construction Algorithms

In this section we present the basic construction algorithms. Because our fundamental feature-
finding tool is an adapted LDB algorithm (see Appendix B), the classifiers must be constructed
with the use of sufficient training data.

Figure 5 provides a simple statement of the algorithm for creating a basic BTC, and Figure 6
provides the algorithm for the BHC.

6.3 Classifier Tree Traversal Algorithms

In this section, we provide algorithm statements for traversing the BTC and BHC trees. That is, we
discuss how to use the constructed trees to classify an input. For the BTC, the traversal is straight-
forward. For the BHC, there are variants that could exhibit substantially different performances.
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1. Specify the set of available CIDs. This generates bhc.numBTC.

2. Obtain the training data sets for the
�

-class problem of inter-
est and specify the allowable set of wavelets. This generates
bhc.C.

3. For each distinct CID type, construct a BTC as in Figure 5. This
generates the array bhc.btc.

4. Set n = 1.

5. For decision node index n, find the BTC indices for all corre-
sponding nodes in the array of BTCs bhc.btc. Call this set of
BTC indices ��� .

6. Find the BTC in ��� with minimum btc.n.A. Denote the index of
this constituent BTC m.

7. Set bhc.btc.n.minTree equal to m for each BTC in the set ��� .
8. Increment n by 1. If n is less than

� �
, goto Step 5.

Figure 6: The algorithm for constructing a BHC.

6.3.1 Binary Tree Classifiers

The algorithm for traversing a BTC is shown in Figure 7. The basic idea is to compute the feature
vector at a decision node and compare it to the left- and right-path stored average feature vectors
for that node. If the measured feature vector more closely resembles the left (right) feature vector,
then the left (right) path out of the node is taken. If the measured vector is equally well correlated
with both the left and right vectors, then a fair two-sided coin is flipped.

6.3.2 Binary Hypertree Classifiers

The basic algorithm for traversing a BHC is provided in Figure 8.

7 Illustrative Example

Here we extend our basic eight-class toy problem originally defined in the DARPA TRUMPETS
work [2]. The basic idea of the problem is, as before, a sort of image classification, but now we
have multiple image modes available. So the classification problem will be to identify the label
of the object that gives rise to the available image-oriented CIDs. Let’s suppose we have a crude
imager that produces binary-valued pixels (black-and-white camera), a slightly more sophisticated
imager that produces gray-scale images (gray-scale camera), one that produces color images (color
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1. Obtain the data to be classified (a CID � ).

2. Compute the classification tree depth � � ����� � � � � .
3. Set � � � and � ��� .
4. Set ��� ��� ��� � � � � � � � � � � � � 	 � 


for � � ���������
� � , � � 	 � � �����	�	� � � 

.

5. Obtain the children of node � : 	 � � � � � 
 � children
� � � .

6. Set � � � CorrCoef
� � � � ��� .

7. Set � � � CorrCoef
� � � � ��� .

8. if � � � � � then � � � � else � � � � .
9. � � � 
 � .

10. If � � � goto Step 4.

11. Class decision is � ��� � � � � � .
Figure 7: The algorithm for traversing the BTC.

1. Obtain at least one CID � to be classified.

2. Choose the constituent BTC with minimum node-1 ambiguity,
say the BTC with index � . Node 1 is the current node.

3. If no CID is present for the current BTC, request the CID from
the sensor suite.

4. Use the basic BTC algorithm to select the left or right path out
of current node in current BTC � , landing on node � . Update
current node to � .

5. Switch to BTC bhc.btc[j].n[k].minTree, the minimum-ambiguity
BTC for node � . Update current BTC to bhc.btc[j].n[k].minTree.

6. If node � is a decision node, goto Step 3.

7. Class decision is � ��� � � � � � .
Figure 8: The basic algorithm for traversing the BHC.
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1. Obtain at least one CID � to be classified.

2. Choose the constituent BTC with minimum node-1 ambiguity,
say the BTC with index � . Node 1 is the current node. Set

�
� � � .

3. If no CID is present for the current BTC, request the � -
component feature vector for the CID and current node from
the sensor suite.

4. Use the basic BTC algorithm to select the left or right path out
of current node in current BTC � , landing on node � . Update
current node to � . Update current BTC � to � � .

5. Switch to BTC bhc.btc[j].n[k].minTree, the minimum-ambiguity
BTC for node � . Update current BTC to bhc.btc[j].n[k].minTree.

6. If node � is a decision node, goto Step 3.

7. Class decision is � ��� � � � � � .
Figure 9: The switch-and-return algorithm for traversing the BHC.

camera), and one that produces infrared images (infrared camera), which images temperature dif-
ferences in the underlying physical objects.

We define the classes in terms of the idealized images they produce at the outputs of the four
cameras, as shown in Figure 10. The interesting part of this problem is to create a situation in
which classification is ambiguous (flawed; irreducible nonzero probability of error) for each imager
independently, but not when used together in a BHC (as needed during classification) or in a BSC.

Discussion.
A casual examination of the idealized images in Figure 10 reveals that there are several completely
ambiguous classes for each camera type. For example, for the black-and-white camera, there are
two sets of ambiguous classes: the circles and the crosses. Out of eight classes, only two may
be reliably classified correctly. It is very important to realize that these problems are inherently
difficult for any classifier structure, not just tree-based structures.

In addition to the large number of ambiguous classes for each camera, note that no two cameras
possess the same set of ambiguous classes. That is, for any two classes, there is at least one camera
type for which the corresponding images are distinct. This fact is crucial to the success of a BHC
(or a BSC): there must be sufficient discriminatory power in the collection of CID types to allow
good classification performance. If there is not, then the collection must be modified in some
fashion, such as adding new CID types (sensor modalities or types).

Sample Hypertrees.
The best BTC for each camera type is shown in Figure 11. For this problem, balanced binary
trees are not optimal for the gray-scale, color, and infrared camera types. For each of the four best
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binary trees, additional trees are constructed using the obtained superclasses for each of the other
three camera types. This ensures that each node in each of the four best trees has at least three
corresponding nodes. The four sets of four BTCs are shown in Figures 12–15 for the black-and-
white, gray-scale, color, and infrared cameras, respectively.

Note that no single constituent BTC is free from highly ambiguous nodes. However, through
the use of the hypertree, we can find an unambiguous path through the collection of BTCs for each
input class, guaranteeing good performance. The hypertree indices are not shown in the figures to
keep the figures legible. Let us illustrate the BHC operation with a few examples next.

Operation.
First suppose that the true class label is 1, and we are provided initially with an output from the
black-and-white (B&W) camera. So we know that we start in BTC 1 (see Figure 12). Node 1
of tree 1 points to itself, so the processing is performed on the B&W camera output, resulting in
taking the left branch out of node 1 and landing on node 2 in tree 1. This node is ambiguous and
points to tree 3, node 2. To continue, the ISP system must request a color camera output. It then
processes this new sensor output and takes the left branch out of node 2, landing on node 4, which
is a terminal node and is correct. The traversal of the hypertree can be summarized in tabular form
in the following way:

(Tree, Node) Camera Get New Data? Branch To Jump To
(1, 1) B&W No (1, 2)
(1, 2) B&W No (3, 2)
(3, 2) Color Yes (3, 4)

Next consider that the true class label is 2 and we again start out with a B&W camera output.
The following hypertree traversal results.

(Tree, Node) Camera Get New Data? Branch To Jump To
(1, 1) B&W No (1, 2)
(1, 2) B&W No (3, 2)
(3, 2) Color Yes (3, 5)
(3, 5) Color No (12, 5)

(12, 5) Gray-Scale Yes (12, 9)
(12, 9) Gray-Scale No (13, 9)
(13, 9) IR Yes (13, 14)

We see that to properly classify class 2 starting with a B&W image, we require all three additional
camera outputs. The situation is quite different for classes 3 and 4. For example, for class 3 and an
initial image from the B&W camera, we have the following hypertree traversal:

(Tree, Node) Camera Get New Data? Branch To Jump To
(1, 1) B&W No (1, 3)
(1, 3) B&W No (1, 6)
(1, 6) B&W No (1, 12)

For this example, no additional camera outputs are required for good classification. A similar result
holds for class 4.

Notice that if we have a class-3 input and we begin with an IR-camera output, we do, in fact,
require additional camera outputs to correctly classify the input:

ISP Technical Note 31142



Mission Research Corporation Integrated Sensors & Processing

(Tree, Node) Camera Get New Data? Branch To Jump To
(4, 1) IR No (4, 2)
(4, 2) IR No (4, 4)
(4, 4) IR No (16, 4)

(16, 4) Gray-Scale Yes (16, 8)

8 Extensions

The tree-based classification methods outlined in this report are quite general in two important
respects. First, they can accommodate widely differing input (sensor output) data types. For exam-
ple, the available sensor outputs can consist of two-dimensional optical images, two-dimensional
range-doppler radar returns, one-dimensional high-range resolution (HRR) returns, SAR images,
infrared images, sound records, etc. In other words, the hypertree classification architecture is
naturally suited for problems in which data fusion is essential.

The second way in which the classifiers exhibit great generality and flexibility is in the specific
choice of classifier type. We need not restrict ourselves to tree-based classifiers in order to reap the
benefits of the ISP-enabled hypertree system. All that is required is the ability to detect ambiguous
decisions and a way to link ambiguous decisions to the collection of the best new data set for
resolving the detected ambiguity.

9 Conclusions

We have documented our initial research efforts in the area of binary hypertree classifiers (BHCs).
The core notion is the generalization of simple binary-tree classifiers (BTCs) to ISP systems in
which traversing the tree is linked to sensor controls so that as ambiguous situations are encoun-
tered, further sensor data is requested from the sensor with the most discriminatory power for the
situation. In this way processing (feature-based classification) is strongly integrated with sensing.

A mathematical framework for hypertree classifiers is laid out, some performance analysis
results are obtained, and algorithms for tree construction and traversal are presented. Future work
will focus on creating a simulator and extending the mathematical analysis.
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Appendices

A Wavelets and Wavelet Packets

Wavelet Transforms.
The wavelet transform of an � � � image is defined by a pair of quadrature mirror filters (QMFs)� � � � and

���� � and a maximum decomposition depth � [5]. The filters
�

and


are low- and high-
pass filters, respectively. The transform iteratively applies the filters to the rows and columns of
the image, subsamples the results, and then starts over with the subsampled data. The filters are
applied in all four of their row-column combinations: low-low (LL), low-high (LH), high-low
(HL), and high-high (HH). At each iteration, the convolution-sampling operation is applied to the
LL data only, while the other three data sets are retained as is. At the final stage (stage � ) the LL
coefficients are also retained. For example, Figure 16 shows an image and its decomposition for
� � � .

It turns out that this iterative filtering and decimating process corresponds to data decomposi-
tion using a set of images that form a basis for all square-summable images. Let these basis images
be denoted by � � � � � � ! � , � � � � ���	������� � , � � � � �����	���
� � � � � , and ! � � � ����������� � � � � � � � , where
� � � � � is a dyadic number. Then the image data, denoted by � , can be represented by

� �
�
� �
�
� � � � �

�
� � � � � � � � ! � � (2)

where � ��� � is a set of coefficients. The variable index maximum � � � � is equal to 0 for � � �
, to �

for � � � , and to 2 otherwise.
Throughout the remainder of this report, the terms basis image and basis vector are used inter-

changeably. This usage emphasizes the strong connections to vector-space ideas and underscores
that most of the discussion is applicable to � -dimensional data sets for � � � .
Wavelet Packets.
The wavelet packet decomposition of an image is closely related to the wavelet transform. Instead
of iteratively applying the QMFs to the LL data only, they are iteratively applied to each of the four
data sets LL, LH, HL, and HH. This results in a set of vectors that contains many distinct bases,
including the basis corresponding to the wavelet transform. Let this large set of linearly dependent
vectors be denoted by � � � � � � ! � , � � � � ���	������� � , � � ��� �������	�
� � � � �

, ! � � � ���	������� � � � � � � � ,
and let the operator

� � �
�
� � denote the transformation of the image data � to the coefficient that

corresponds to the basis image � � � � � � ! � ,� � � � � � ��� � �
�
� � 	�� 
 �

Then the image data is represented by

� � �
� �
�
� � � � �

�
� � � � � � � � ! �

� �
� �
�
� � � � � �

�
� � 	 � 
 ��� � � � � � ! � �
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The image subspace spanned by the vectors � � � � � ��� � is denoted by
% � � � � � . Each node in the

tree of Figure 17 is associated with a single subspace
% � � � � � . An orthogonal basis is an orthogonal

collection of the
% � � � � � that spans the image space.

The wavelet packet decomposition is illustrated in Figure 17. Note that the wavelet transform
consists of all extreme-left nodes and their immediate children.

An Alternate Subspace-Indexing Scheme.
In the previously described indexing scheme for � � � � � � ! � , the variable � denotes the depth in the
decomposition tree (Figure 17), � denotes the node number at depth � (starting with � � �

on
the left), and ! denotes the particular element in the matrix associated with node � at depth � . For
example, the filled node in Figure 17 corresponds to � � � , � � ��� , and it is associated with an� � � � � by

� � � � � matrix, whose elements are indexed by ! (starting with ! �3�
) after creating a vector

by concatenating its rows.
In computer programs that implement decomposition trees like that in Figure 17 (see WaveLab

[6]), it can be more convenient to use a different indexing scheme. In this alternate scheme, the
basis images are also indexed by an ordered triplet

� � � � � ! � , where � denotes the absolute node
number, and the pair

� � � ! � denotes the matrix element associated with node � . For example, the
filled node in Figure 17 corresponds to � � � � , and it is associated with an

� � � � � by
� � � � � matrix,

so that � ���������	�	��� � � � � , and ! �������	���	��� � � � � .
We refer to the first numbering system as Saito’s numbering system (SNS) [4] and to the alter-

nate as the wavetree numbering system (WNS), after MRC’s MATLAB data structure wavetree.
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Figure 16: Wavelet transform for � � � , which is also the wavelet packet for � � � . The
Daubechies wavelet with parameter 20 is used.

Analogy to the Two-Dimensional Fourier Transform.
The representation of the image � as a weighted sum of basis images might be better understood by
analogy with the simpler and more familiar two-dimensional discrete Fourier transform (2D-FT).
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The 2D-FT for the image � � � � � � � ��� � is

� � ����� ��� � � ��
� ���

��
� ��� � � � � ��� � � � ���	��
 � � � � � � ���	��� � � � �

and its inverse is simply � � � � ��� � ��
��
 ���

��
��� ��� � � �	��� �	� ��� � ���	�
 � � � � � ������� � � � �

A single element from the inverse-transform sum is

� �	� ��� � � � � ��� � � � � � � ��� / � � � � �
which is a scaled image in � and � . The image is trivially obtained by inverse transforming the
2D-FT that is zero everywhere except for

��� � � � ��� ���
.

The wavelet transform, or any other transform based on the wavelet packet, works in a similar
way, although the transform is more complex. However, we can obtain the basis images by inverse
transforming a set of coefficients that are all zero except in the desired location

� � � � � ! � .
Wavelet-Packet Processing.
The goal in wavelet-packet compression is to search over all possible bases corresponding to a
wavelet packet for the one that possesses maximum energy compaction with respect to a target
class of interest. This simply means that the energy of the decomposed data is concentrated in the
fewest possible basis coefficients. If the number of significant basis coefficients is small compared
to � �

, then by representing the data as the values of these few coefficients, a large degree of
compression is obtained at a small loss in fidelity.

The goal in wavelet-packet classification is to search over all possible bases for the one that
possesses the basis vectors that have the maximum discrimination power over all input target
classes of interest. The discrimination power is quantified by a distance measure. Such a basis is
referred to as a local discriminant basis (LDB) [4]. The ideal LDB is one for which a very small
number (compared to � �

) of basis coefficients can be used to reliably determine the class to which
an input data set belongs. LDBs, and how to obtain them, are the focus of the next section.

B Local Discriminant Bases

The material in this appendix is excerpted from [2].

LDBs are obtained only in the context of a specific set of target classes of interest. Suppose we
have

�
classes of interest, and we have � � training images for class � , � � ����������� � , provided in

sets � � . It is assumed that the training images are representative of their respective classes. The
fundamental idea behind the LDB is to find a basis such that there are a few basis vectors whose
coefficients vary widely among the classes while varying little between members of a class. Before
we can determine whether a vector can provide good discrimination between classes, we need to
know something about the behavior of the vector’s coefficients within each class. Specifically, we
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Figure 17: Illustration of the wavelet packet decomposition.

need to establish a measure of the average strength of the coefficients throughout the packet for
each class. The strength measure could be average value, average absolute value, average energy,
and others [4]. Then we need to establish a measure of the distance or difference between the
basis coefficients for two or more classes; this distance measures the discrimination power of the
corresponding basis image.

Coarse LDB Algorithm.
To find the LDB, and the best vectors in the LDB, we perform the steps shown in Figure 18, which
we shall expand upon in the remainder of this section.

1. Obtain the training data sets.

2. Select a wavelet by choosing a QMF pair.

3. For each target class, find the energy in its average wavelet
packet decomposition using the training data.

4. Search over the bases in the packet for the one with the largest
differences in average interclass energy.

5. For the selected basis, order the basis vectors by their discrim-
ination power.

Figure 18: A coarse statement of the algorithm for finding the local discriminant basis (LDB).
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B.1 Constructing the Average Packet-Energy Map

The goal of this step in the LDB algorithm is to characterize the average energy contained in the
subspaces

% � � � � � for each target class. This gives us an idea of where the energy is concentrated
for the various classes, which can be used to select subspaces that possess greatly varying average
energies over the input classes, indicating good discrimination power.

The baseline average packet-energy map [4] for class � is defined by
� � � � � � � ! � :

� � � � � � � ! � ��
�
� � �

��� ��� �	� � � � � �
�
� � 	�� � 
 � � � (3)

where the class energy
� � is defined by

� � �� �
��� �
� �	� � � �	� � � �

The energy map
� � has the advantages of conceptual and mathematical simplicity, and it does

indicate the subspaces that are particularly energetic, but it has drawbacks for LDB-based ATR.
In particular, it cannot distinguish between subspaces that have similar energy by coefficients with
opposing signs; such pairs of subspaces may in fact be very useful for classification. To avoid this
drawback, an alternate energy measure is simply the average value map:

� � � � � � � ! � ��
�
� � �

��� ��� ��� � � � �
�
� � 	 � � 
 � (4)

This map can be especially useful in conjunction with the variance map:

� � � � � � � ! � ��
' �
� � �

��� �
� �	� � � � � �
�
� � 	 � � 
 � � � � � � � � � � ! � � * ��� � � (5)

Because there are competing energy-measuring functions, the generic energy-map function is
denoted by

� � � � � � � ! � . The energy for a subspace
% � � � � � is simply the sum of energies of its

components.

B.2 Searching for the Best Discriminant Basis

The goal of this processing step is to use the energy maps to determine the LDB. The idea, as
previously stated, is to find the nodes in the packet tree (or, equivalently, the subspaces

% � � � � � )
that possess a distinctly different average energy for each class. To find these nodes, we need
to define a measure of distance between the subspace energy functions

�� � � � � � �	� � � &� ��� . To be
general, we base the distance measure � ��� � on a pairwise distance measure ���

��� ��� � :

� � � � � � �� ��� � � ��
� ���

���
� � � � ��� � � � � �

�
� (6)

The pairwise distance measure can be Euclidean distance, relative entropy, or others (see [4], page
66).
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The baseline subspace energy distance function [4] can now be defined:

� � �� � � � � � ��� � � &� ��� � � � � �� � � � � � � � &� ��� � � � � ��� � � ��
� � � � � �� � � � � � � ! � � � � � � � � � ! � �������
� � & � � � � � ! � � � �

This is the sum over all unique pairs of the pairwise distances for elements of the subspace
% � � � � � .

Note that if the energy in the vectors for each class is distinct from the energy in the other classes,
the sum of pairwise differences will be large.

Denote the LDB by the collection of subspaces � � � � � � and denote the children of subspace% � � � � � by
� % � � 
 ��� � ��� � � � � � � � � � . The algorithm for obtaining the LDB is stated in Figure

19. Step 6 is the key step. The idea is to compare the discrimination power of a subspace to the
sum of the discrimination powers of all its children. If the children are better discriminators, then
they determine the composition of the best-basis subspace, but if the subspace itself is a better
discriminator, then it is retained as the best-basis subspace.

1. Choose the desired QMFs for the wavelet packet of interest.

2. Specify the maximum decomposition depth � .
3. Specify the pairwise distance measure � �

��� ��� � and the sub-
space energy measure

� � � � � � � ! � .
4. Compute the energy maps

� � for � � ���������	���
� � .

5. Set � � � � � � =
% � � � � � and

� � � � � � � � � �� � � � � � � � &� ��� � for � �� � ���	������� ��� � �
. This initializes the LDB to the set of subspaces

at the lowest level of the decomposition (viewed in terms of a
tree).

6. Find the best subspace � � � � � � for � � � ���������	�	� � and � �� � ���	������� � � � �
by using the following rule:

Set
� � � � � � � � � �� � � � � � � � &� ��� � .

If
� � � � � � � �

� � � � � �
�
� � � � 
 ��� ���

then set � � � � � � ��% � � � � �
else set � � � � � � � �

� � � � � �
�
� � � � 
 ��� ��� and set

� � � � � � ��
� � � � � �

�
� � � � 
 ��� � � .

7. The LDB is � ��� � � � .
Figure 19: A detailed statement of the algorithm used to find the local discriminant basis (LDB).
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B.3 Ordering Basis Vectors by Discriminant Power

The final step in obtaining the LDB is to order the individual basis vectors in terms of their discrim-
ination power. A natural choice for the measure of discrimination power is the distance measure
used in obtaining the best basis. When obtaining the best basis, the measure was applied to sub-
spaces

% � � � � � . Here, the measure is applied to the individual vectors in the subspaces making up
the best basis. The vectors are then sorted in decreasing order with respect to their distance.

An alternative to using the best-basis distance measure to order the basis vectors involves using
the average-value energy map � � � � � � � ! � together with the variance map

� � � � � � � ! � . The primary
difficulty with using the baseline energy map

� � together with the distance measure � � is that a
vector that possesses a high average energy for a target class can also have a high variance for the
images within the class, which can substantially limit its applicability for classification. The ideal
vector has the following properties

1. Maximum mean values over the
�

target classes,

2. Maximally distinct mean values over the
�

classes,

3. Small variance for each class.

Motivated by these considerations, we can define a distance between two elements of the best
basis that is particularly suitable for classification purposes. For classes

�
and

�
, define

� �
�� � � � � � � � ! � �� � �� � � � � � � � ! � �

for � � � � �
. Then the pairwise distance is defined by

� � � � � � � � � ! � � � � � � �� � � ��� � � ��� ��� � � 
 �
� � � ��� � � �� � �

� �
� � ��� ��� 
 � � � � ��� � � �

�
The distance between more than two classes can be the sum of the pairwise distances,

� � � � � � � � ! � � �
��
� ���

��
� � � � � � � � � � � � � � ! � � � � � � �

or the minimum over all pairs� � � � � � � � ! � � � ��
�
� � � � � � � � � � � � ! � � � � � � �
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Abstract
Recently developed binary-tree-based classifiers are studied through simulation experiments. The
two distinct classifiers are general and are applicable to a wide variety of classification problems.
The classifiers accept one- and two-dimensional inputs and can be easily generalized to higher
dimensions. The core classifier is the binary tree classifier (BTC). This classifier employs the
local discriminant basis (LDB) to automatically and jointly determine the best tree topology and
feature-vector values for each decision-node in the tree. The binary hypertree classifier (BHC)
combines several BTCs for the special situation in which multiple input data types are available
for each class. For example, the objects may be viewed with one of several distinct camera types.
A BTC is created for each camera type and the BHC combines these in an efficient manner so
that performance is maximized while using a minimum of input data types. The performance of
these and related classifiers is evaluated in this report via simulation experiments for one- and two-
dimensional inputs. It is shown that the classifiers are very good at automatically determining the
structure of a given problem and extracting the most useful feature subsets for inclusion in the tree
structures.
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1 Introduction

The ability to automatically determine the type of a remote target, such as a tank, bus, or armored
vehicle, is crucial to successful military operations because it helps sort out friends, foes, and
neutrals in the chain of weapons-targeting operations. The subject of this report is a new class
of systems for automatic target recognition (ATR) that is developed mathematically in a compan-
ion report [1]. The new systems employ the local discriminant basis (LDB) [3] and binary- tree
classifiers in an attempt to automatically identify and characterize the highly discriminatory data
elements and, simultaneously, minimize the required number of sensor modalities for accurate
classification. In other words, the systems attempt to reap the performance gains of a full-blown
sensor-fusion approach by selectively requesting new data or modalities only when required to
eliminate a class ambiguity.

This report presents a set of experimental results aimed at proof-of-concept for the binary tree
classifiers presented in [1]. We aim to answer the following questions. Can the developed struc-
tures automatically determine the low-dimensional data subspace that provides optimal classifica-
tion performance? Can the developed hypertree structures minimize or substantially reduce the
amount of data needed for a given performance level when compared to a classifier that fuses all
available sensor data? To provide the proof-of-concept and answers to these questions, we apply
the developed machinery to several problems involving simulated one- and two-dimensional data
sets, as well as to publicly available data sets used in classification-system research and develop-
ment.

The remainder of this report is organized as follows. The binary-tree classification structures
are reviewed in Section 2, and the methods of training the classifiers are described in Section 3.
Classifier operation (a relatively simple task compared to training) is briefly described in Section
4 (see also [1]). The various experiments and results are described in Section 5, and concluding
remarks are provided in Section 6.

2 Binary Trees for Classification

In this section, we review the three tree-based classifier structures developed in [1]: the binary
tree classifier (BTC), binary supertree classifier (BSC), and the binary hypertee classifier (BHC).
The BTC is a classifier that uses a single sensor modality (called here a classifier input data (CID)
type) and, usually, one wavelet type. Its topology and the classes involved at the decision nodes
can be fixed in advance of training or chosen jointly during training. The BSC is a BTC that uses
all available CIDs types (concatenated together) as its input; it represents a fusion algorithm. The
BHC links together an arbitrary number of BTCs or BSCs to form a structure that jumps from CID
to CID as needed or, more generally, from BTC to BTC as needed. The performance of the BHC
is, in some cases, equal to that of the BSC, but the average data requirement should be smaller.

2.1 The Binary Tree Classifier (BTC)

The binary tree classifier has structure as illustrated by the example in Figure 1. The tree can be
balanced or unbalanced; the particular connections of decision and terminal nodes is called the tree
topology. For each decision node in the BTC, there are several quantities that need specification:
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1. Measurement Vector � . This vector has length
�

and specifies the
�

wavelet operations
used to make the binary decision at the node.

2. Left Superclass Set � and Right Superclass set � . Each decision node makes a single binary
decision between the superclasses on the left and right. The union of � and � for any
decision node is equal to the set of all classes inherited from the node’s parent. For example,
refering to Figure 1, node 1 (the root node) splits the class-label set �����
	���������
������
������ into
nonempty subsets �����������
	���������
��� and ��� �!�"��������� .

3. Left Average Feature Vector # . This vector has length
�

and is the average value of the
�

measurements specified by � using the classes contained in superclass set � .

4. Right Average Feature Vector $ . This vector has length
�

and is the average value of the
�

measurements specified by � using the classes contained in superclass set � .

There are many possible tree topologies, and for each of these, there are many choices for su-
perclass selection. The idea is to jointly select the topology, superclasses, and measurement vectors
such that the tree has optimal performance. The code developed during this work is general enough
to accommodate a fixed topology, a fixed topology with fixed superclasses, or a free topology and
free superclass selection.

2.2 The Binary Supertree Classifier (BSC)

The binary supertree classifier is simply a BTC with a multimodal classifier input data (CID) type.
The data for each CID is concatenated to form the “super” input to the BSC.

2.3 The Binary Hypertree Classifier (BHC)

The binary hypertree classifier connects two or more BTCs that are aimed at solving the same
classification problem. A graphical depiction of a BHC is shown in Figure 2. This particular
BHC comprises four BTCs, each associated with a unique CID. The key idea is that each decision
node in each BTC has an ambiguity associated with it such that for low ambiguity (near zero),
the decision made at the node is almost always correct (low probability of error), and for high
ambiguity (near 1), the decision is wrong with probability near one-half. Some BTCs may have
several decision nodes with very low ambiguity and several with high ambiguity. The BHC points
each node of each BTC to the constituent BTC having the node with lowest ambiguity and same
union of � and � .
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Figure 1: A typical BTC for an eight-class problem.
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3 Classifier Parameter Specification and Training

In this section we review the manner in which BTCs and BHCs are specified starting from a training
data set and ending with an operational classifier.

3.1 Tree Topology

The tree topology is the set of connections between the tree nodes. The tree can be balanced, as in
Figure 3, or unbalanced, as in Figure 1. The best topology for a particular classification problem
is dependent on the statistical nature of the problem. In general, it is advantageous to determine
the topology in some adaptive manner that employs measurements on the training data. Analysis
of balanced and unbalanced BTCs is reported in [1].

The tree topologies are specified using an integer-valued vector, whose structure is explained
here. Each successive pair of integers in the vector specify the sizes of the left and right superclass
sets for a node in the tree. The convention used to create the vector is to start at the root node and
take the left path out of that node to find the next node. Record the two integers specifying that
node’s superclass sizes and continue taking the left path out of each node until a terminal node is
reached, then travel back up the tree, taking the first available right-going path that is found. This
is repeated until all decision nodes are specified in the vector. The balanced tree of Figure 3, for
example, is specified by �

��� ����	�	�������� 	�	���������� �
and the unbalanced tree of Figure 1 is specified by�

��� ����� ��� � 	�������� 	��������

3.2 Superclass Selection

For a fixed topology
�

, there are many choices for the sets of left and right superclasses denoted
by �"��� � and �"�	� � , respectively. The superclasses may be specified in advance, which would also
implicitly define the topology. This may be reasonable when certain class subsets are obviously
related in some manner, such as those classes whose images consist of arcs and those that consist
of straight edges. But in most cases, it will not be obvious how to specify the best topology or
superclass sets, and so we’ll need an algorithm that finds them automatically during training.

3.3 Feature-Vector Specification

If the topology and superclasses are specified, then there are two remaining classifier parameters
to specify: the measurement vectors and the average feature vectors. The measurement vector is
determined by using the local discriminant basis (LDB) [5] at each decision node [3, 1]. This
algorithm finds the best wavelet basis (using the specified mother wavelet type) for representing
the classes for the purpose of discriminating between classes. This operation is analogous to the
more familiar best-basis algorithm for finding the best wavelet basis for representing the classes
for the purpose of compression. The feature-vector specification algorithm then finds the best�

vectors in the LDB. These
�

wavelet basis vectors are then used as the measurement vector.

ISP Technical Note 11168



Mission Research Corporation Integrated Sensors & Processing

1

2 3

5 6 74

8 9 10 11 12 13 14 15

Decision
nodes

Decision
nodes

Root node

Terminal nodes

Tree level 0

Level 2

Level 3

Level 1

Figure 3: A balanced tree.

Finally, the algorithm uses the obtained measurement vector to find the average feature values for
the two involved superclasses. During operation, the measurement vector is applied to the data to
be classified, and the resultant

�
-vector is compared to the left and right average feature vectors.

3.4 Joint Tree Topology, Superclass Selection, and Feature-Vector Specifi-
cation

The key algorithm in this work is the algorithm for joint specification of the topology, superclasses,
and feature vectors for a generic BTC. We have not proved that this algorithm produces the opti-
mal classifier, but our experiments show that the algorithm is adept at automatically determining
appropriate topologies, superclasses, and features, and that performance can be quite good. The
difficulty with finding the optimal set of tree parameters is computational. For problems with even
a modest number of classes � , the number of topologies times the number of superclass selections
is very large. This is further compounded when there is more than one sensor modality, so that the
number of CIDs � is greater than one.

The joint tree-specification algorithm is not optimal because it does not examine all possible
combinations of tree topology and superclass selection. Instead, it assumes that good superclass
selections can be made for each node by properly modifying a previously chosen superclass split.
In particular, the algorithm first finds the best split that puts one class in � and the remaining
classes in � . By “best split” we mean the choice resulting in lowest ambiguity. Then the algorithm
finds the best choice for adding one of the elements of � to � , and so on. The detailed algorithm
statement is shown in Figure 4.
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1. Obtain a set of training data for the � -class problem of interest.

2. Select a specific CID type.

3. Initialize a BTC structure:

(a) Specify the wavelet type (e.g., Haar, Daubechies, Symmlet).

(b) Specify the wavelet-packet tree depth � .

(c) Specify the feature-vector length � .

4. Start with the root node, node ����� .
5. Denote by �
	 the inherited set of classes for node � . Let ��	 have size�

.

6. Set �� � 	�������� .
7. Let ��������� , ������� 	 ,  !��� .
8. Denote the size of � � as � . Let �"	$#&%�'(�)�*%,+-� � � and �.	/#&%0'1�2�
	43
� 	 #&%�' .

9. Compute LDB for node � .

10. Select best � elements of LDB to form 5 	 .
11. Compute 6
	 and 78	 .
12. Compute the ambiguity 9	/#&%0' .
13. Repeat Steps 8–12 until %(�:� .

14. Increment  , decrement � .

15. Retain the ��	;#&%�' set for which �	;#&%�' is minimum. Denote best ��	;#&%�'
by � � .

16. If the minimum ambiguity 9	/#&%0' is greater than 0� � 	 , then goto Step
18, else set �� � 	<��=	;#&%�' .

17. Repeat Steps 8–15 until � � has size greater than or equal to
�?>�@

.

18. Find childless decision node with specified parent node; denote by �
if it exists and goto Step 5.

19. Stop.

Figure 4: Automatic specification of BTC topology, superclasses, and features.
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Figure 5: An eight-class problem used for illustration.

Example of Joint Algorithm in Action.
As an example, consider the eight-class problem shown in Figure 5. In this example, which is
explored in more detail in Section 5, the eight classes are interpreted as objects viewed through a
gray-scale camera. This operation results in perfectly ambiguous class subsets, such as �����
	����� ,
and � ������ . The automatically obtained BTC for this CID is shown in Figure 6. Each decision node
is annotated with its computed ambiguity and each terminal node is annotated with a class label.
The important point here is that the automatic algorithm perfectly captures the inherent structure
of the problem: 7 will be mistaken for 8 and vice versa, and 1, 2, and 6 will be confused. This
simply reflects the strong ambiguities in the problem.

3.5 Specifying the BHC

A BHC is constructed from two or more constituent BTCs. The BTCs must attack either the same
classification problem or subsets of a single problem, but otherwise can have different topologies,
CIDs, superclass selections, wavelets, feature lengths

�
, etc. Crucial to creation of a BHC is the

notion of corresponding nodes. For convenience, the mathematical definition of corresponding
nodes is repeated here [1]:

Definition 1 (Corresponding Nodes) Let ��� and ��� denote two distinct BTCs and let � � and ���
denote decision nodes from � � and ��� , respectively. If the union of the left and right superclasses
for nodes � � and ��� match, then these two nodes are corresponding. If the superclasses are equal,
then the nodes are equivalent. Note that the binary-tree parameters � � and ��� for � � and ��� need
not be equal. �

Let � denote a binary hypertree with � constituent binary tree classifiers each with parameter
� and each addressing the same classification problem. Assign the node pointers for each node
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Figure 6: A BTC automatically obtained and plotted using the developed software.

such that the node points to the BTC with minimum ambiguity-corresponding node. These pointers
will be used during BHC operation.

4 Classifier Operation

The operation of the three classifier types is described in this section. Detailed algorithm statements
for classifier operation are provided in the companion report [1]. Here the operation is described
in a less formal way.

4.1 BTC and BSC

The operation of these classifiers is particularly simple. First, the item to be classified is obtained.
This is a single CID for the problem of interest for the BTC and all available CIDs for the BSC.
Starting at the root node of the BTC (or BSC), the wavelet signal processing operations encoded
in the measurement vector � are used to compute the feature vector � , which has length

�
. The

correlation coefficient between � and the left-going average feature vector # is computed and com-
pared to that for the right-going feature vector $ . Take the left path if the feature is more highly
correlated with # , otherwise take the right path. Continue in this manner until a terminal node is
reached. The class label associated with the reached terminal node is the decision.

Note that the use of the correlation coefficient means that the amplitude of the data element to
be classified is irrelevant, since it is normalized away.
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4.2 BHC

The BHC operation is only slightly more complex than operation for the BTC. First, the item to be
classified is obtained. Start with whatever CID is cheapest to obtain or start with the CID corre-
sponding to the BTC with minimum-ambiguity root node. Compute the required two correlation
coefficients and select the left or right path out of this first node. Check the hypertree pointer in the
new node. If it points to the current tree and current node, then continue, else jump to the tree and
node stored in the pointer. The BTC that is jumped to may correspond to the same CID or a new
CID. If it is a new CID, perform the operations needed to obtain the data and compute the required
correlation coefficients. Continue in this way until a terminal node is reached.

4.3 Path Correction in the BTC

It will be very rare to construct a tree classifier such that all decision nodes have very small or
zero ambiguity. This will happen only for problems that are inherently easy to solve. Therefore,
BTCs for real-world difficult problems will have one or more nodes with relatively high ambiguity
and, therefore, non-negligible probability of decision error. Because the computational operations
required during tree-traversal are modest in complexity, we consider multiple traversals of the
tree in an attempt to provide the best possible decision. In particular, we outfit the classifier with
the capbability of detecting a poor-quality decision, and a means to avoid that decision during a
subsequent traversal. We call this notion path correction.

The key idea in path correction is that of decision quality. When the node ambiguities encoun-
tered during a particular tree traversal are all small, we would expect that the winning correlation
coefficient at each node in the traversed path will be close to one. On the other hand, if one of the
encountered nodes has high ambiguity and an erroneous decision is made at this node, we would
expect that all winning correlation coefficients for the remaining nodes in the path will be far from
one since the path cannot contain the true class. Therefore, it should be possible to detect, based
on the sequence of winning correlation coefficients obtained during traversal, a “bad path.” Then
the tree can be retraversed with the detected low-quality decision ruled out.

In our path-correction algorithm, the decision quality is simply the value of the winning corre-
lation coefficient at the decision node just above the chosen terminal node. The tree is traversed as
many times as needed, until either the decision quality is high, or the root node is reached. If this
happens, the path correction algorithm simply produces the original decision.

We will see that path correction is particularly well suited to situations involving weak ambigu-
ities. For problems containing strong ambiguities, path correction should not help since multiple
paths through the tree will result in identical decision qualities (cf. Figures 5 and 6).

5 Experiments

In this section, we report on various experiments aimed at validating our classification theory and
design. In Section 5.1, we examine a one-dimensional problem involving 16 classes and three CID
types. The classes correspond to the 16 unique maximal-length shift-register (MLSR) sequences
for shift-register length eight [8]. In Section 5.2, we examine a synthetic two-dimensional problem
involving eight classes and four CID types. The classes correspond to eight physical objects seen
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through four camera types and involve serious ambiguities for each CID. In Section 5.3 we look
at several classification problems using publicly available data. The involved classes include DNA
sequences, letters of the roman alphabet, and data related to the space shuttle.

The goals of the experiments are as follows:

1. Validate the operation of the basic binary tree classifier.

2. Validate the performance ordering BSC � BHC � � BTC � .
3. Determine the data-burden advantage of the hypertree classifier over the supertree (fusion)

classifier.

4. Determine the influence of the particular choice of wavelet.

5. Determine the efficacy of path correction for the BTC and BSC.

6. Determine how well the system automatically determines the problem structure; that is, how
well the system identifies and isolates ambiguous classes in the produced trees.

5.1 Toy Problem One: One-Dimensional Inputs

In this section, we report on a number of related experiments in which the classes of interest consist
of a set of sixteen binary sequences. The sequences have length 256 and are the sixteen unique
maximum-length shift-register (MLSR) sequences associated with a shift-register length of eight
[8]. The goal of the classification system is to efficiently use the three classifier input data (CID)
types to correctly determine which MLSR sequence gave rise to the data.

Classifier Input Data Types.
There are three CIDs for the one-dimensional problem. These correspond to the sequences them-
selves, filtered sequences, and an auxilliary input called metal. Graphs of the sixteen noise-free
elements of each CID set are shown in Figures 7–9. The concept here is that one CID is a high-
resolution version of the sequences (which will later suffer from low SNR), one is a low-resolution
version (which may be less costly to obtain), and the final CID is an auxilliary piece of information
that has low discrimination capability, but may be useful for resolving ambiguities arising from the
first two CIDs.

Experiment Outputs.
For each distinct subexperiment, the following results will be provided.

1. The obtained classification trees will be displayed. The decision nodes will be annotated
with their ambiguity and the terminal nodes with their class label.

2. The overall probability of correct classification ( ����� ) will be graphed versus classifier in-
dex. This graph reveals the overall relations between the BSC, BHC, and the constituent
BTCs. We would expect that the BHC and BSC have the best performance, and could be
substantially better than any of the BTCs.

3. The confusion matrix will be displayed so that the basic misclassification patterns can be
observed and correlated with any obvious class ambiguities.
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Figure 7: The sixteen MLSR sequences for the one-dimensional experiments.

4. Two histograms will be provided for the quality measure. The first corresponds to all trials
for which the classification is correct, and the second corresponds to all other trials. This
will allow a quantitative assessment of the quality measure as a tool for detecting incorrect
classifier outputs.

5. For the BHC, the average number of required distinct CID types will be reported. This
number will be compared to the data input requirement for the appropriate BSC to determine
the BHC’s average potential savings in required input data.

5.1.1 Experiment 1.1: Basic 1-D Processing

In this first MLSR experiment, BTC, BHC, and BSC structures are obtained for a single wavelet
type. Since there are three CIDs and one measurement type, there are three basic BTCs, one BHC,
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Figure 8: The sixteen filtered MLSR sequences.
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Figure 9: The auxilliary information CID for the one-dimensional experiments.
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and one BSC, for a total of five distinct classifiers. Six additional derived classifiers, explained
below, are added to obtain eleven classifiers. The experimental parameters are provided in Table 1.

Parameter Value

Wavelet Type Coiflet
Wavelet Parameter 5
Feature Length

�
20

Number of Classes � 16
BTC/BHC Wavelet Tree Depth � 6
BSC Wavelet Tree Depth � 8
Number of CIDs 3
Data Dimension [1 256]
Processed Data Dimension [1 512]
Training SNR �
Input SNR CIDs 1,2,3 10, 13, 10dB
Random Translation None
Random Scaling None
Tree Topology Free
Superclass Assignment Free
Number of Trials 100

Table 1: Experimental parameters for the first 1-D experiment.

Probability of Correct Classification The overall classification performance for the three basic
BTCs, the BHC, and the BSC is summarized in Figure 10.

Automatically Obtained BTCs and BSC The obtained BTC structures are plotted in Figures
11–15. The first three of these correspond to the BTCs that are found for the three CIDs, and are
called the basic BTCs. The remaining six BTCs are formed by fixing the structure of one of the
basic BTCs and replacing the CID with one of the other two CIDs, and are called derived BTCs.
The obtained BSC tree is shown in Figure 15. In these plotted trees, and in all others in this report,
nodes that are “jump-to” nodes in the BHC are colored green, and nodes that have high ambiguity
are colored red. Green takes precedence over red. Otherwise, the node is black.

Notice the prevalence of low-ambiguity nodes in the BTC for CID 1 (the sequences themselves)
in Figure 11. This correlates well with the performance for this BTC shown in Figure 10. For the
second CID, we see from Figure 12 that the tree is much more balanced, but that the ambiguities
are generally larger. These two effects tend to oppose each other, and performance is as good as for
CID 1. For CID 3, the most ambiguous of the three CIDs, we see from Figure 12 that the obtained
tree is highly unbalanced and contains some large ambiguities high in the tree. This correlates well
with the observed probability of correct classification of 0.4 in Figure 10.

Regarding the BSC in Figure 15, we see that the obtained tree is distinct from any of the three
basic BTCs and that there are no high-ambiguity nodes in the upper parts of the tree. However, the
tree is severely unbalanced at the root node, and this can cause a serious performance shortfall.
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Figure 10: Classification performance for Experiment 1.1

Confusion Matrices The confusion matrices for the three basic BTCs, the BHC, and the BSC
are shown in Figures 16–18, respectively. Note the correlation between the appearance of the
confusion matrix and the structure of the trees. For example, for CID 3, we have the tree in Figure
12 and the confusion matrix in Figure 17. From the latter, we see that classes 5 and 6 are commonly
confused for a large number of input classes. From the tree, we see that these two classes are the
only possible decisions when taking the left path out of the root node.

Quality Measures The histograms of the quality measures for Experiment 1.1 are shown in
Figures 19–23.

Conclusions for Experiment 1.1

1. The BSC is outperformed by both the BTCs and the BHC. Since the BSC has access to all
available input data, it should not be outperformed by any of the constituent BTCs, and its
performance should upper-bound that of the BHC. The reason for this result is unclear.

2. The BHC outperforms the BTCs. This basically means that the algorithm for forming the
BHC is working well, choosing the best nodes in the correct trees so that switching from one
BTC to the next results in a performance improvement on the average.

3. The algorithm for jointly choosing tree topology and feature-vector values is generating
a variety of topologies and tree-nodes with small ambiguities. We also observe that the
algorithm is doing a good job in pushing large ambiguities downward in the tree, which is
a necessary condition for good performance. However, since the structure of the individual
class elements is hard to discern (each of the classes is represented by an essentially random
binary string), it is difficult to determine if the tree topologies make sense in terms of good
splits of the incoming class labels into two sets of outgoing labels. This task is made much
easier in Experiment 2, for which the structure of the data is more easily grasped visually.
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4. The quality measure is a good indicator of the correctness of a classification decision. A
large majority of incorrect decisions result in a quality measure that is less than 0.90, while
virtually all correct decisions result in a quality measure that is greater than 0.95. This
implies that the BTCs and the BSC may benefit from path correction (see Sections 4 and
5.1.3).
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Figure 11: BTCs obtained for Experiment 1 (1–2 of 9).

ISP Technical Note 24181



Mission Research Corporation Integrated Sensors & Processing

0.01

0.93 0.00

5 6

0.29 0.01

14

0.51 0.33 0.00

16 9

0.50 0.500.50 0.50

7 12 8

0.97

13

0.97

15

0.96

1011 2 1 3 4

BTC 3. CID: Metal, Wavelet: Coiflet, Param: 5

0.13

0.79 0.41

8

0.40

3

0.29

9

0.83

13

0.95

16

0.96 0.80 0.93

0.92 0.28

5 7 11

0.91

144 10

0.94

1

0.88

62 1215

BTC 4. CID: Low−Res, Wavelet: Coiflet, Param: 5

Figure 12: BTCs obtained for Experiment 1 (3–4 of 9).
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Figure 13: BTCs obtained for Experiment 1 (5–6 of 9).
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Figure 14: BTCs obtained for Experiment 1 (7–8 of 9).
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Figure 16: Confusion matrices for BTCs 1 and 2 in Experiment 1.1.
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Figure 17: Confusion matrices for BTC 3 and the BHC in Experiment 1.1.
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Figure 18: Confusion matrix for the BSC in Experiment 1.1.
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Figure 19: Quality histogram for BTC 1 in Experiment 1.1.
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Figure 20: Quality histogram for BTC 2 in Experiment 1.1.
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Figure 21: Quality histogram for BTC 3 in Experiment 1.1.
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Figure 22: Quality histogram for the BHC in Experiment 1.1.
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Figure 23: Quality histogram for the BSC in Experiment 1.1.
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5.1.2 Experiment 1.2: Multiple Wavelet Types

In this second one-dimensional experiment, the number of constituent BTCs available for use in
the BHC is increased by allowing distinct measurement functions (wavelet types) in addition to
the distinct data types (CIDs). In particular, ten distinct wavelet types are used instead of just one
as in Experiment 1.1. The parameters for Experiment 1.2 are shown in Table 2.

For each wavelet type, the three basic BTCs are found through the algorithm that jointly de-
termines tree topology and feature-vector values. This yields a total of thirty BTCs. For each of
these, two additional BTCs are created by fixing the topology and superclass choices, selecting
one of the other CID types, and retraining the structure. This yields 60 more BTCs. The BHC is
based on these 90 classifiers. Finally, ten BSCs are created, one for each wavelet type.

Parameter Value

Wavelets
Beylkin
Coiflet 1
Coiflet 5
Daubechies 4
Daubechies 20
Symmlet 4
Symmlet 10
Vaidyanathan
Battle 1
Battle 3

Feature Length
�

20
Number of Classes � 16
BTC/BHC Wavelet Tree Depth � 6
BSC Wavelet Tree Depth � 8
Number of CIDs 3
Data Dimension [1 256]
Processed Data Dimension [1 512]
Training SNR �
Input SNR CIDs 1,2,3 10, 13, 10dB
Random Translation None
Random Scaling None
Tree Topology Free
Superclass Assignment Free
Number of Trials 100

Table 2: Experimental parameters for the second 1-D experiment.

Automatically Obtained BTCs and BSCs The thirty basic BTCs, the BHC, and the ten BSCs
for Experiment 1.2 tend to be either largely balanced or severely unbalanced. For reasons of
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brevity, we do not display the trees in this section. The results are fairly similar to those for
Experiment 1.1.

Probability of Correct Classification The probabilities of correct classification for the thirty
basic BTCs and the ten BSCs in Experiment 1.2 are shown in Figure 24. Since the BHC is outper-
formed by several BTCs, including those used in Exp 1.1 (BTCs 7–9), the algorithm for construct-
ing a BHC from constituent BTCs is flawed, else it could restrict its attention to only BTCs 7–9
and thereby obtain the performance of the BHC in Experiment 1.1.

Note also that the BTC and BSC performance is strongly dependent on the wavelet. The best
wavelet for an individual BTC is Daubechies with CID 2 (BTC 11), and the best wavelet for the
BSC is Beylkin (BSC 1).
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Figure 24: Classification performance for Experiment 1.2

Confusion Matrices The obtained confusion matrices for the BTCs are shown in Figures 25–39,
for the hypertree classifier in Figure 40, and for the BSCs in Figures 41–45.

Quality Measures Finally, the quality measures for the various classifiers in Experiment 1.2 are
shown in Figures 46–66.

Conclusions for Experiment 1.2

1. Many of the BTCs for this experiment result in good-to-excellent performance, but the exact
performance level is dependent on the specific wavelet.

2. The BHC is not correctly constructed from the set of constituent BTCs. Our suspicion is
that the algorithm is relying too heavily on the use of ambiguity to choose the “jump-to”
nodes in the hypertree. This must be balanced by the power of the obtained average feature
vectors (relative to the average power of the input classes). Very weak average features may
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Figure 25: Confusion matrices for BTCs 1 and 2 in Experiment 1.2.

BTC 3 in Exp 1.2: Beylkin, Metal
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BTC 4 in Exp 1.2: Coiflet, High−Res
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Figure 26: Confusion matrices for BTCs 3 and 4 in Experiment 1.2.

have ambiguities near zero, but are also highly susceptible to noise, so that the hypertree
algorithm must take both metrics into account when choosing nodes. The current version of
the algorithm does, in fact, take both of these parameters into account, but the method must
be refined.

3. The average quality measure for incorrect decisions is very small compared to the average
quality measure for correct decisions. This implies that path correction may provide a sub-
stantial performance boost for all BTCs and BSCs.
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BTC 5 in Exp 1.2: Coiflet, Low−Res
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BTC 6 in Exp 1.2: Coiflet, Metal
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Figure 27: Confusion matrices for BTCs 5 and 6 in Experiment 1.2.

BTC 7 in Exp 1.2: Coiflet, High−Res
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BTC 8 in Exp 1.2: Coiflet, Low−Res
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Figure 28: Confusion matrices for BTCs 7 and 8 in Experiment 1.2.

BTC 9 in Exp 1.2: Coiflet, Metal
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BTC 10 in Exp 1.2: Daubechies, High−Res
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Figure 29: Confusion matrices for BTCs 9 and 10 in Experiment 1.2.
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BTC 11 in Exp 1.2: Daubechies, Low−Res
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BTC 12 in Exp 1.2: Daubechies, Metal
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Figure 30: Confusion matrices for BTCs 11 and 12 in Experiment 1.2.

BTC 13 in Exp 1.2: Daubechies, High−Res
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BTC 14 in Exp 1.2: Daubechies, Low−Res
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Figure 31: Confusion matrices for BTCs 13 and 14 in Experiment 1.2.

BTC 15 in Exp 1.2: Daubechies, Metal
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BTC 16 in Exp 1.2: Symmlet, High−Res

In
pu

t C
la

ss

Output Decision
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Figure 32: Confusion matrices for BTCs 15 and 16 in Experiment 1.2.
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BTC 17 in Exp 1.2: Symmlet, Low−Res
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BTC 18 in Exp 1.2: Symmlet, Metal

In
pu

t C
la

ss

Output Decision
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Figure 33: Confusion matrices for BTCs 17 and 18 in Experiment 1.2.

BTC 19 in Exp 1.2: Symmlet, High−Res

In
pu

t C
la

ss

Output Decision
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

BTC 20 in Exp 1.2: Symmlet, Low−Res
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Figure 34: Confusion matrices for BTCs 19 and 20 in Experiment 1.2.
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BTC 22 in Exp 1.2: Vaidyanathan, High−Res
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Figure 35: Confusion matrices for BTCs 21 and 22 in Experiment 1.2.
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BTC 24 in Exp 1.2: Vaidyanathan, Metal
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Figure 36: Confusion matrices for BTCs 23 and 24 in Experiment 1.2.
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BTC 26 in Exp 1.2: Battle, Low−Res
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Figure 37: Confusion matrices for BTCs 25 and 26 in Experiment 1.2.
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BTC 28 in Exp 1.2: Battle, High−Res

In
pu

t C
la

ss

Output Decision
2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Figure 38: Confusion matrices for BTCs 27 and 28 in Experiment 1.2.
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BTC 30 in Exp 1.2: Battle, Metal
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Figure 39: Confusion matrices for BTCs 29 and 30 in Experiment 1.2.
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Figure 40: Confusion matrix for the BHC in Experiment 1.2.
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BSC 2 in Exp 1.2: Coiflet
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Figure 41: Confusion matrices for BSCs 1 and 2 in Experiment 1.2.
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BSC 4 in Exp 1.2: Daubechies
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Figure 42: Confusion matrices for BSCs 3 and 4 in Experiment 1.2.
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BSC 5 in Exp 1.2: Daubechies
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BSC 6 in Exp 1.2: Symmlet
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Figure 43: Confusion matrices for BSCs 5 and 6 in Experiment 1.2.
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BSC 8 in Exp 1.2: Vaidyanathan
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Figure 44: Confusion matrices for BSCs 7 and 8 in Experiment 1.2.
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Figure 45: Confusion matrices for BSCs 9 and 10 in Experiment 1.2.
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Figure 46: Quality histograms for BTCs 1 and 2 in Experiment 1.2.
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Figure 47: Quality histograms for BTCs 3 and 4 in Experiment 1.2.
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Figure 48: Quality histograms for BTCs 5 and 6 in Experiment 1.2.
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Figure 49: Quality histograms for BTCs 7 and 8 in Experiment 1.2.
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Figure 50: Quality histograms for BTCs 9 and 10 in Experiment 1.2.
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Figure 51: Quality histograms for BTCs 11 and 12 in Experiment 1.2.
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Figure 52: Quality histograms for BTCs 13 and 14 in Experiment 1.2.
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Figure 53: Quality histograms for BTCs 15 and 16 in Experiment 1.2.
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Figure 54: Quality histograms for BTCs 17 and 18 in Experiment 1.2.
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Figure 55: Quality histograms for BTCs 19 and 20 in Experiment 1.2.
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Figure 56: Quality histograms for BTCs 21 and 22 in Experiment 1.2.
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Figure 57: Quality histograms for BTCs 23 and 24 in Experiment 1.2.
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Figure 58: Quality histograms for BTCs 25 and 26 in Experiment 1.2.
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Figure 59: Quality histograms for BTCs 27 and 28 in Experiment 1.2.
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Figure 60: Quality histograms for BTCs 29 and 30 in Experiment 1.2.
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Figure 61: Quality histograms for the BHC in Experiment 1.2.
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Figure 62: Quality histograms for BSCs 1 and 2 in Experiment 1.2.
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Figure 63: Quality histograms for BSCs 3 and 4 in Experiment 1.2.
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Figure 64: Quality histograms for BSCs 5 and 6 in Experiment 1.2.
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Figure 65: Quality histograms for BSCs 7 and 8 in Experiment 1.2.
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Figure 66: Quality histograms for BSCs 9 and 10 in Experiment 1.2.
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5.1.3 Experiment 1.3: Path Correction in the BTC

In this experiment, we revisit Experiment 1.1 but we use path correction in the BTCs and the BSC.
Path correction has not be implemented for the BHC. Recall that path correction allows a BTC to
follow several different paths through the tree until one is found that has sufficiently high decision
quality. The paths are selected by detecting the presence of a decision node with poor quality
and retraversing the tree and forcing this node to make the alternate choice. That is, we do not
simply compute all paths through the tree in an exhaustive way and pick the best. In this way, path
correction usually involves a small number of iterations.

Probability of Correct Classification The probability of correct classification for Experiment
1.3 is shown in Figure 67 (compare to Figure 10). Note that the performances for all BTCs and
the BSC are improved over the corresponding performance for Experiment 1.1. The most dramatic
increase is for CID 3, which has a probability of correct classification of 0.4 without path correction
and greater than 0.9 with path correction.
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Figure 67: Classification performance for Experiment 1.3

Confusion Matrices The confusion matrices for Experiment 1.3 are shown in Figures 68–70.
Note that for BTCs 1 and 3 and for the BSC there are only a few ambiguous classes. Performance
for BTC 1, which directly operates on the MLSR sequence, is near perfect, indicating that the
automatically obtained tree structure together with path correction can find the small number of
wavelet basis vectors needed for excellent performance with no prior knowledge provided to the
algorithm.

Quality Measures The decision-quality histograms for Experiment 1.3 are shown in Figures 71–
75. There are much fewer low-quality incorrect decisions as compared to Experiment 1.1 (no path
correction). However, the BHC, which does not yet have path correction available, still produces a
large number of low-quality incorrect decisions.
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Figure 68: Confusion matrices for BTCs 1 and 2 in Experiment 1.3.

Conclusions for Experiment 1.3

1. Path correction appears to substantially improve performance for a BTC (or BSC, being a
special case of the BTC). For CID 3, performance improved from � ��� ��� � � to 0.9.

2. The presence of a large number of very low-quality decisions for the BHC indicates that the
BHC may also be greatly improved by employing some form of path correction. This has
not yet been done since the path through the hypertree is much more complex than the path
through a single BTC.

3. Our suspicion that path correction is particularly well suited to problems having soft class
ambiguities is supported by the results of Experiment 1.3. In Experiment 2 we will look for
further evidence, since the classes in that problem have multiple hard ambiguities.
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Figure 69: Confusion matrices for BTC 3 and the BHC in Experiment 1.3.
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Figure 70: Confusion matrix for the BSC in Experiment 1.3.
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Figure 71: Quality histogram for BTC 1 in Experiment 1.3.
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Figure 72: Quality histogram for BTC 2 in Experiment 1.3.
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Figure 73: Quality histogram for BTC 3 in Experiment 1.3.
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Figure 74: Quality histogram for the BHC in Experiment 1.3.
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Figure 75: Quality histogram for the BSC in Experiment 1.3.
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5.2 Toy Problem Two: Two-Dimensional Inputs

In this section, we report on a number of related classification experiments for which the synthetic
input classes consist of eight objects. The objects are represented as images (two-dimensional
inputs), and there are four classifier input data (CID) types. The physical interpretation is that each
object can be viewed through one of four distinct camera types. The images have dimension 32 by
32 for each CID. The goal of the processing is to correctly classify the object type (decide on the
class label) given a minimum number of CIDs.

Classifier Input Data Types.
The eight classes and four CIDs result in the thirty-two images shown in Figure 76. The eight
underlying abstract objects are seen through four cameras: black-and-white, gray-scale, color, and
infrared. Notice the substantial ambiguity built into each of the CIDs. For example, for CID 1
(black-and-white camera), classes 1, 2, 5, and 6 are identical, and classes 7 and 8 are identical.
So the best possible classifier for this type of CID will produce many errors. The idea behind the
present research is the development of a classifier that can take advantage of the additional CIDs
in such a way as to resolve all ambiguities while simultaneously using the minimum number of
additional CIDs.

Experimental Outputs.
The outputs of the experiments are identical to those in Experiment 1: the obtained classification
trees, the probability of correct classification for each classifier, the confusion matrix for each
classifier, quality-measure histograms, and the number of distinct CIDs required by the BHC.

5.2.1 Experiment 2.1: Basic 2-D Processing

In the first two-dimensional experiment, the BTC, BHC, and BSC structures are obtained for a
single wavelet type and high SNR. Classification experiments are performed to illustrate the rela-
tive effectiveness of the BTCs, the BHC, and the BSC. This establishes the basic correctness of the
approach and code, and sets up a baseline for comparison with more complex experimental results.
The parameters for Experiment 2.1 are listed in Table 3.

Automatically Obtained BTCs and BSC The trees for the obtained BTCs and the BSC are
shown in Figures 77–85. Note that the first four BTCs are the basic BTCs, and the remainder are
derived (see Section 5.1). It is instructive to study the four basic BTCs while keeping in mind the
ambiguities shown in Figure 76. This is done in the following paragraphs.

For CID 1 (black-and-white camera), we have the BTC in Figure 77. The important point
is that the ambiguities obvious from Figure 76 are reflected in the tree structure. In particular,
the ambiguous classes of 7 and 8 are assigned their own branch in the tree, as are the four-way
ambiguous classes 1,2,5, and 6. Therefore, classes 7 and 8 will be confused for each other, as is
natural, and 1,2,5, and 6 will be confused for each other. If the classes 7 and 8 are replaced by class
A and classes 1,2,5, and 6 are replaced by the single class B, then the resulting tree would have the
structure required by the formalism of this work: there would be a single path through the tree to
A and a single path to B. In this sense, the obtained tree should produce perfect results.
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Parameter Value

Wavelet Type Coiflet
Wavelet Parameter 5
Feature Length

�
20

Number of Classes � 8
BTC/BHC Wavelet Tree Depth � 4
BSC Wavelet Tree Depth � 5
Number of CIDs 4
Data Dimension [32 32]
Training SNR �
Input SNR CIDs 1,2,3,4 10dB
Random Translation None
Random Scaling None
Tree Topology Free
Superclass Assignment Free
Number of Trials 100

Table 3: Experimental parameters for the first 2-D experiment.

For CID 2 (gray-scale camera), we have the BTC in Figure 78. Again, the inherent ambiguities
are reflected in the structure. Here the classes 7 and 8 form one ambiguous set, and the classes 1,2,
and 6 form the other.

For CID 3 (color camera), the BTC is shown in Figure 79. Here the obtained structure does
not quite reflect the inherent ambiguity of the problem. Classes 7 and 8, which form an ambiguous
class, are found in separate regions of the tree. The other set of ambiguous classes, 2, 5 and 6, are
successfully isolated and grouped together in the tree.

Finally, for CID 4 (infrared camera), the BTC is given in Figure 80. All ambiguous sets are
correctly represented in the tree: �����
	����� , � ������� , and �"������ .
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Figure 77: BTCs obtained for Experiment 2 (1–2 of 16).
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Figure 78: BTCs obtained for Experiment 2 (3–4 of 16).
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Figure 79: BTCs obtained for Experiment 2 (5–6 of 16).
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Figure 80: BTCs obtained for Experiment 2 (7–8 of 16).
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Figure 81: BTCs obtained for Experiment 2 (9–10 of 16).
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Figure 82: BTCs obtained for Experiment 2 (11–12 of 16).
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Figure 83: BTCs obtained for Experiment 2 (13–14 of 16).
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Figure 84: BTCs obtained for Experiment 2 (15–16 of 16).
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Figure 85: BSC obtained for Experiment 2.1.
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Probability of Correct Classification The estimates of the probability of correct classification
( � ��� ) for Experiment 2.1 are given in Figure 86. Note that the predicted performance ordering
holds: BSC � BHC � � BTC � .
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Figure 86: Probability of correct classification for Experiment 2.1.

Confusion Matrices The confusion matrices for the BTCs, BHC, and BSC for Experiment 2.1
are shown in Figures 87–89. It is very easy to see, for each CID, the correspondence between the
ambiguous classes and the errors in the confusion matrix.

Quality Measures The histograms for the quality measure for Experiment 2.1 are shown in Fig-
ures 90–92. What is most notable here is the large number of very-high-quality incorrect decisions
made in BTCs 1 and 3, and in the BHC. This should render path correction much less effective
than in the one-dimensional experiments.

Conclusions for Experiment 2.1

1. The algorithms for creating basic binary tree classifiers and the hypertree classifier can work
well even for problems involving multiple data types with severe ambiguities.

2. The performance ordering is as predicted by the theory, with the BSC outperforming the
BHC, which outperforms all its constituent BTCs by a wide margin.

3. Excellent performance can be had through use of only a small number of key wavelet coef-
ficients even when each consituent BTC in a hypertree has very poor performance.
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Figure 87: Confusion matrices for BTCs 1 and 2 in Experiment 2.1.
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Figure 88: Confusion matrices for BTCs 3 and 4 in Experiment 2.1.
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Figure 89: Confusion matrices for the BHC and BSC in Experiment 2.1.
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Figure 90: Quality histograms for BTCs 1 and 2 in Experiment 2.1.
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Figure 91: Quality histograms for BTCs 3 and 4 in Experiment 2.1.
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Figure 92: Quality histograms for the BHC and BSC in Experiment 2.1.
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5.2.2 Experiment 2.2: Multiple Wavelets

In this experiment, we consider the influence of the particular wavelet used in forming the LDB
(cf. Section 5.1.2). The parameters for the experiment are shown in Table 4. Six different wavelet
types are employed and for three of these, two variants are used, for a total of ten distinct wavelets.

Parameter Value

Wavelets

Beylkin
Coiflet 1
Coiflet 5
Daubechies 4
Daubechies 20
Symmlet 4
Symmlet 10
Vaidyanathan
Battle 1
Battle 3

Feature Length
�

20
Number of Classes � 8
BTC/BHC Wavelet Tree Depth � 4
BSC Wavelet Tree Depth � 5
Number of CIDs 4
Data Dimension [32 32]
Training SNR �
Input SNR CIDs 1,2,3,4 10dB
Random Translation None
Random Scaling None
Tree Topology Free
Superclass Assignment Free
Number of Trials 100

Table 4: Experimental parameters for the first 2-D experiment.

Automatically Obtained BTCs and BSC The numerous automatically obtained BTCs are quite
similar to those obtained in Experiment 2.1 and are not shown for reasons of brevity. The ten ob-
tained BSCs are shown in Figures 93–97. All ten are distinct, but they reflect the sets of ambiguities
inherent in the four CIDs, considered jointly (see Figure 76). For example, the classes 1, 2, 5, and
6 almost always appear together in an isolated part of the tree, which reflects the fact that either
three or four of these classes are ambiguous in all CIDs. None of the BSCs have a particularly
small ambiguity for the root node, reflecting again the fact that even the aggregate data (the four
CIDs considered jointly) is riddled with ambiguity.
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Figure 93: BSCs obtained for Experiment 2.2 (1–2 of 10).
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Figure 94: BSCs obtained for Experiment 2.2 (3–4 of 10).
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Figure 95: BSCs obtained for Experiment 2.2 (5–6 of 10).
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Figure 96: BSCs obtained for Experiment 2.2 (7–8 of 10).
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Figure 97: BSCs obtained for Experiment 2.2 (9–10 of 10).
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Probability of Correct Classification The estimated probabilities of correct classification for
Experiment 2.2 are shown in Figure 98. The forty BTCs are obtained as follows. The first ten
BTCs are the basic BTCs, one per wavelet in Table 4. The remaining thirty BTCs are derived from
these ten BTCs by keeping the structure, changing the CID, and retraining. The most obvious
result is that the classifier performance is not particularly sensitive to the wavelet choice. Six of the
BSCs achieve a � ��� of greater than 0.98; the rest are near 0.9. The hypertree classifier outperforms
all forty of its constituent BTCs but is generally outperformed by the BSCs.
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Figure 98: Probability of correct classification for Experiment 2.2.

Confusion Matrices and Quality Measures The confusion matrices and histograms of decision
quality are not particularly informative and are not shown.

Conclusions for Experiment 2.2

1. The basic performance ordering, predicted by theory, of BSC � BHC � � BTC � holds, as in
Experiment 2.1.

2. Classifier performance is not strongly sensitive to the wavelet choice, unlike the one-dimensional
experiment. This is likely due to the fact that the performance here is dominated by se-
vere ambiguities which cannot be influenced by a better match between the classes and the
wavelet shape.
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5.2.3 Experiment 2.3: Path Correction in the BTC

In this final experiment, we revisit Experiment 2.1 and allow the BTCs and BSC to employ the
path-correction algorithm. Recall that this optional algorithm greatly improved performance in
Experiment 1. In Experiment 2.3, we employ the structures obtained in Experiment 2.1, but allow
path correction to take place.

Probability of Correct Classification The estimated probability of correct classification for Ex-
periment 2.3 is shown in Figure 99. By comparing with Figure 67, we see that the performances
for the BTCs are slightly worse in Experiment 2.3, and the performances for the BHC and BSC
are unchanged. So, path correction does not help here. It may have helped with the BSC, but its
performance without path correction was already nearly perfect, so there are few paths to correct.
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Figure 99: Probability of correct classification for Experiment 2.3.

Confusion Matrices The confusion matrices for Experiment 2.3 are shown in Figures 100–102.

Quality Measures The histograms of the output quality measure for Experiment 2.3 are shown
in Figures 103–105. As in Experiment 2.1, there are many incorrect decisions with very high
quality.

Conclusions for Experiment 2.3

1. Path correction does not help a BTC (or BSC) when the problem contains severe ambiguities.
This is because such ambiguities result naturally in incorrect decisions with high quality.
Even when the classifier attempts to correct a path, it will likely end up choosing one of the
decisions in the equivalence class made up by the ambiguous classes.
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Figure 100: Confusion matrices for BTCs 1 and 2 in Experiment 2.3.
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Figure 101: Confusion matrices for BTCs 3 and 4 in Experiment 2.3.
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Figure 102: Confusion matrices for the BHC and BSC in Experiment 2.3.
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Figure 103: Quality histograms for BTCs 1 and 2 in Experiment 2.3.
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Figure 104: Quality histograms for BTCs 3 and 4 in Experiment 2.3.
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Figure 105: Quality histograms for the BHC and BSC in Experiment 2.3.
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5.3 Collected-Data Problem: The StatLog Data Sets

This section presents the results of various experiments performed by applying the binary tree
classifiers (BTCs) and the binary hypertree classifier (BHC) to publicly available data sets intended
for use by classifier-algorithm developers.

In particular, we present test results for the StatLog data sets [9]. The StatLog data sets are
publicly available data sets obtained from the Laboratory of Artificial Intelligence and Computer
Science (LIACC) at University of Porto. These data sets were used in the “Project StatLog” of the
Machine Learning subgroup for evaluation and characterization of machine learning, neural, and
statistical classification algorithms. Some of the data sets in the StatLog database were originally
obtained from the larger database at the UCI Machine Learning Repository [10]. The test results
of this section aid in the evaluation of the overall BTC and BHC performance and robustness.

5.3.1 Data Set Description

There are a total of ten different data sets in the StatLog repository. Four of these data sets (DNA,
Letter, Shuttle, Satimage), which already have the training and test data sets split, are used to
obtain the results presented herein. Some of the data sets are claimed to have been “processed.”
For example, for the DNA sequence set, the data in the file is already converted to numerical
values from the original symbolic variables representing the nucleotides. Table 5 tabulates some
parameters pertaining to these four data sets.

A brief description of each of the four data sets follows.

1. DNA: Each entry in the data set represents a DNA sequence with splicing boundaries to
be classified. The original 60 symbolic variables/attributes in the sequence representing the
nucleotides have been converted into 180 binary indicator variables. Specifically, the four
alphabet symbols (A, C, G, T) representing the nucleotides are mapped into the four binary
sequences: 100, 010, 001, and 000 respectively. A note posted on the repository site states
that much better performance is generally observed if attributes closest to the junction are
used, and these correspond to attribute indices 61-120.

2. Letter: The original black-and-white pixel displays of the 26 capital letters in 20 different
fonts randomly distorted are converted into 16 primitive numerical attributes representing
statistical moments and edge counts and then scaled to the range of integers from 0 to 15 to
form this data set. This is the only preprocessing done to the data set.

3. Shuttle: No explicit data description is available for this data set. The class labels appear
to indicate some sort of shuttle control signals, such as Rad Flow, Fpv Close, Fpv Open,
Bypass, etc. The only preprocessing done to the data set was the stripping away of the
time ordering information by randomizing the order in which the original data vectors came.
This ordering information could be relevant in classification that takes into account control
sequencing information.

4. Satimage: This data set represents data from Landsat satellite images. Each sample repre-
sents a 3-by-3 square image within an 82-by-100 pixel area that is contained in the original
image of 2340-by-3380 pixels. The images correspond to digital images of the same scene
in 4 different spectral bands. Class labels include red soil, cotton crop, grey soil etc. Each
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data vector comprises the range of values (from 0 for black to 255 for white) of the 9 pixels
in 4 different spectral bands resulting in 36 attributes. A note in the data description states
that to avoid the problem which arises when a 3-by-3 neighborhood straddles a boundary,
one can consider using only the 4 attributes 17-20 which correspond to the 4 spectral values
for the center pixel. No preprocessing was done to this data set.

5.3.2 Experimental Set-Up

A total of 16 experiments were performed on the StatLog data sets by varying a number of pa-
rameters including the data set itself, the number of input vectors used to train the BTC, wavelet
types, data dimension (the number of attributes used), processed data dimension (dimension af-
ter any zero padding), feature length

�
, and wavelet tree depth � . Relevant parameters for each

individual experiment are summarized in Tables 8-11. The parameters that are varied in the 16
experiments are tabulated in Table 6. In these tables, ����� and ����� denote, respectively, the number
of training and test input vectors used in the experiments. In order to expedite processing, the first
����� data vectors in each class of the training data sets were used to train the BTC, and the resulting
classifier structures were then applied to the first ����� data vectors of the test data sets. It is noted,
however, that the data distribution is not uniform over the data class. That is, the number of data
vectors available for each class is different. For the Shuttle data set, about 80% of the data belongs
to Class 1, and the distribution ranges from 6 to 34108 for the training set and from 2 to 11478 for
the test set. For the remaining three data sets, there are at least 100 vectors per class. Therefore,
the number of training and test data vectors used in the experiment for the Shuttle data is chosen
to be

� � � � (i.e. utilizing all vectors given in a class whose size is smaller than 100). For the
remaining data sets, the number of test data vectors used is chosen to be �	��� � � � � . The number
����� of training vectors used for each data set is shown in Table 6.

To further expedite processing, only the first 8 classes (letters A-H) were used for the Letter data
set experiment while two different numbers of training vectors were used for comparison purposes
in this experiment. Three different wavelet types were used for the Letter and Satimage data sets
in order to observe any sensitivity to the choice of wavelets. Data dimension is varied for only the
DNA and Satimage data sets according to the notes given in Section 5.3.1 on the possible effects
of the choice of attributes on performance. The processed data dimension is simply the dimension
of the data vector zero padded to fulfill a dyadic dimension restriction. Values of

�
and � are also

varied to study their effects on performance. It is noted however that these 16 experiments are not
meant to be exhaustive. They simply serve the purpose of providing insight into the applicability
of the BTC in classifying inputs of various types.

5.3.3 Results and Discussion

Results of the 16 experiments are shown in Figures 106-153. These correspond to 16 sets of three
figures, one for each experiment. Results of experiments with path correction are also shown in
each figure for comparison purpose. The following results are presented in the set of three figures:

1. Quality measures as a function of trial indices. The trial indices are ordered in groups,
one for each class. The quality measure is the quality of the decision made by traversing
the classification tree. This quality is a function of the set of correlation coefficient pairs
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encountered during the tree traversal. Also indicated are the probability of error � � and
probability of correction classification � ��� over all classes and all trials.

2. Confusion matrices that show the basic misclassification patterns.

3. Histograms of the quality measures corresponding to trials for which the classification is
correct (indicated by red bars) and trials for which the classification is incorrect (indicated
by blue bars).

Table 7 summarizes the individual (single class) and overall classification performance in terms of
� ��� .

Based on the figures, there does not seem to be noticeable overall improvement with the use of
path correction in these data sets. While improvement is observed in the results for certain classes
and data sets, degradation is observed in others. This is possibly due to the nature of the data
such as interclass ambiguity. The effect of path correction is therefore not conclusive from these
experiments.

For the DNA data set, an overall performance degradation is observed in Experiment 2 with the
use of the full data dimension versus the use of only attributes 61-120 in Experiment 1, which is
claimed to yield better results (cf. DNA data set description in Section 5.3.1). However, it is noted
that while performance is worsened for Classes 1 and 3, performance for Class 2 is improved.

For the Letter data set, the use of a larger number of training vectors (500 instead of 100) does
not appear to improve performance noticeably between Experiments 3 and 4 for which

� � � . But
for

� � � � (Experiments 5-10), the use of a larger number of training vectors appears to improve
overall performance. Increasing

�
from 8 to 16 also appears to improve general performance

slightly. It is interesting to note that with the larger
�

, performance for Classes 1-4 is improved
while performance for Classes 5-8 is worse. It is also noted that the low-quality measures evident
in the results for

� � � are eliminated in the results for
� � � � . Lastly, results of Experiments

5-10 for the Letter data set also demonstrate insensitivity to the particular choices of wavelets used.
For the Shuttle data set, the increase in

�
does not appear to affect performance significantly.

Performance for certain classes is improved while others worsened.
Finally, for the Satimage data set, a slight performance degradation is observed in Experiment

14 with the use of the full data dimension versus the use of only attributes 17-20 in Experiment 13
(cf. Satimage data set description in Section 5.3.1). Also noticed is a small degree of sensitivity to
the choice of wavelet types.

The experimental results presented here demonstrate that the BTC has the capability of classi-
fying suitable publicly available data sets. While performance for certain classes and data sets are
very good, performance for some others are quite bad. This can possibly be attributed to the nature
of the data sets such as interclass ambiguity. The below-average performance for the Letter data
set could possibly be due to the preprocessing that was done to the original letter image data to
which we have not found access. Performance is believed to improve if the LDB-based classifier
is applied directly to these original images rather than the numerical attributes of edge counts and
statistical moments represented in these data.
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Data Size of Size of Number of Data Integer Data
Set Training Set Test Set Classes Dimension Values

DNA 2000 1186 3 180 � 0,1 �
Letter 15000 5000 26 16 [0,15]
Shuttle 43500 14500 7 9 [-26739,15164]

Satimage 4435 2000 6 36 [0,255]

Table 5: Some parameters pertaining to four of the data sets obtained from the StatLog repository.

Data Data Processed Data
Experiment Set

�
��� Wavelet Dimension Dimension � �

1 DNA 400 Coiflet(5) 60 64 16 3
2 DNA 400 Coiflet(5) 180 256 32 8
3 Letter 100 Coiflet(5) 16 16 8 4
4 Letter 500 Coiflet(5) 16 16 8 4
5 Letter 100 Coiflet(5) 16 16 16 4
6 Letter 100 Beylkin(0) 16 16 16 4
7 Letter 100 Daubechies(4) 16 16 16 4
8 Letter 500 Coiflet(5) 16 16 16 4
9 Letter 500 Beylkin(0) 16 16 16 4

10 Letter 500 Daubechies(4) 16 16 16 4
11 Shuttle

� � ��� Coiflet(5) 9 16 4 4
12 Shuttle

� � ��� Coiflet(5) 9 16 9 4
13 Satimage 400 Coiflet(5) 4 8 4 4
14 Satimage 400 Coiflet(5) 36 64 36 6
15 Satimage 400 Beylkin(0) 36 64 36 6
16 Satimage 400 Daubechies(4) 36 64 36 6

Table 6: Summary of varied parameters in the StatLog data experiments.
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Data Data
Exp Set

�
��� Wavelet Dimension � � � � ������� � ��� ���	� � ���

1 DNA 400 Coiflet(5) 60 16 3 0.71 0.95 0.82
2 DNA 400 Coiflet(5) 180 32 8 0.56 0.74 0.62
3 Letter 100 Coiflet(5) 16 8 4 0.33 0.93 0.51
4 Letter 500 Coiflet(5) 16 8 4 0.26 0.93 0.51
5 Letter 100 Coiflet(5) 16 16 4 0.18 0.90 0.53
6 Letter 100 Beylkin(0) 16 16 4 0.18 0.90 0.53
7 Letter 100 Daubechies(4) 16 16 4 0.18 0.90 0.53
8 Letter 500 Coiflet(5) 16 16 4 0.27 0.90 0.58
9 Letter 500 Beylkin(0) 16 16 4 0.27 0.90 0.58

10 Letter 500 Daubechies(4) 16 16 4 0.27 0.90 0.58
11 Shuttle

� � ��� Coiflet(5) 9 4 4 0.28 1.00 0.69
12 Shuttle

� � ��� Coiflet(5) 9 9 4 0.22 1.00 0.70
13 Satimage 400 Coiflet(5) 4 4 4 0.29 0.98 0.71
14 Satimage 400 Coiflet(5) 36 36 6 0.32 1.00 0.68
15 Satimage 400 Beylkin(0) 36 36 6 0.28 1.00 0.71
16 Satimage 400 Daubechies(4) 36 36 6 0.33 0.96 0.65

Table 7: Performance summary for the case with no path correction. � ��������� represents the proba-
bility of correct classification for the class that is classified correctly the least among the classes in
the set and � ��� �
�	� represents the probability of correct classification for the class that is classified
correctly the most. � ��� is the overall probability of correct classification.
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Parameter Exp1 Exp 2

Wavelet Type Coiflet Coiflet
Wavelet Parameter 5 5
Feature Length � 16 32
Number of Classes � 3 3
BTC Wavelet Tree Depth � 3 8
Data Dimension [1 60] [1 180]
Processed Data Dimension [1 64] [1 256]�
��� 400 400�
��� 100 100

Table 8: Parameters for Experiments 1 and 2: DNA data set.

Parameter Exp 3 4 5 6 7 8 9 10

Wavelet Type Coiflet Coiflet Coiflet Beylkin Daub. Coiflet Beylkin Daub.
Wavelet Parameter 5 5 5 0 4 5 0 4
Feature Length � 8 8 16 16 16 16 16 16
Number of Classes � 8 8 8 8 8 8 8 8
Wavelet Tree Depth � 4 4 4 4 4 4 4 4�
��� 100 500 100 100 100 500 500 500�
��� 100 100 100 100 100 100 100 100

Table 9: Experimental parameters for Experiments 3–10: Letter data set. The data dimension and
processed data dimensions are [1 16].
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Parameter Exp 11 Exp 12

Wavelet Type Coiflet Coiflet
Wavelet Parameter 5 5
Feature Length � 4 9
Number of Classes � 7 7
BTC Wavelet Tree Depth � 4 4
Data Dimension [1 9] [1 9]
Processed Data Dimension [1 16] [1 16]�
���

� � ��� � � ����
���

� � ��� � � ���

Table 10: Experimental parameters for Experiments 11 and 12: Shuttle data set.

Parameter Exp 13 14 15 16

Wavelet Type Coiflet Coiflet Beylkin Daub.
Wavelet Parameter 5 5 0 4
Feature Length � 4 36 36 36
Number of Classes � 6 6 6 6
BTC Wavelet Tree Depth � 4 6 6 6
Data Dimension [1 4] [1 36] [1 36] [1 36]
Processed Data Dimension [1 8] [1 64] [1 64] [1 64]�
��� 400 400 400 400�
��� 100 100 100 100

Table 11: Experimental parameters for Experiments 13–16: Satimage data set.
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Figure 106: Quality measures for Experiment 1–DNA data set.
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Figure 107: Confusion matrix for Experiment 1–DNA data set.
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Figure 108: Histogram of quality measures for Experiment 1–DNA data set.
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Figure 109: Quality measures for Experiment 2–DNA data set.
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Figure 110: Confusion matrix for Experiment 2–DNA data set.
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Figure 111: Histogram of quality measures for Experiment 2–DNA data set.
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Figure 112: Quality measures for Experiment 3–Letter data set.
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Figure 113: Confusion matrix for Experiment 3–Letter data set.
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Figure 114: Histogram of quality measures for Experiment 3–Letter data set.
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Figure 115: Quality measures for Experiment 4–Letter data set.
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Figure 116: Confusion matrix for Experiment 4–Letter data set.
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Figure 117: Histogram of quality measures for Experiment 4–Letter data set.
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Figure 118: Quality measures for Experiment 5–Letter data set.
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Figure 119: Confusion matrix for Experiment 5–Letter data set.
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Figure 120: Histogram of quality measures for Experiment 5–Letter data set.
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Figure 121: Quality measures for Experiment 6–Letter data set.
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Figure 122: Confusion matrix for Experiment 6–Letter data set.
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Figure 123: Histogram of quality measures for Experiment 6–Letter data set.
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Figure 124: Quality measures for Experiment 7–Letter data set.
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Figure 125: Confusion matrix for Experiment 7–Letter data set.
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Figure 126: Histogram of quality measures for Experiment 7–Letter data set.
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Figure 127: Quality measures for Experiment 8–Letter data set.
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Figure 128: Confusion matrix for Experiment 8–Letter data set.
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Figure 129: Histogram of quality measures for Experiment 8–Letter data set.
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Figure 130: Quality measures for Experiment 9–Letter data set.
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Figure 131: Confusion matrix for Experiment 9–Letter data set.
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Figure 132: Histogram of quality measures for Experiment 9–Letter data set.
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Figure 133: Quality measures for Experiment 10–Letter data set.
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Figure 134: Confusion matrix for Experiment 10–Letter data set.
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Figure 135: Histogram of quality measures for Experiment 10–Letter data set.
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Figure 136: Quality measures for Experiment 11–Shuttle data set.
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Figure 137: Confusion matrix for Experiment 11–Shuttle data set.
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Figure 138: Histogram of quality measures for Experiment 11–Shuttle data set.
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Figure 139: Quality measures for Experiment 12–Shuttle data set.
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Figure 140: Confusion matrix for Experiment 12–Shuttle data set.
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Figure 141: Histogram of quality measures for Experiment 12–Shuttle data set.
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Figure 142: Quality measures for Experiment 13–Satimage data set.
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Figure 143: Confusion matrix for Experiment 13–Satimage data set.

ISP Technical Note 110267



Mission Research Corporation Integrated Sensors & Processing

0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

H
is

tr
og

ra
m

Quality Measure

Without Path Correction

Qxy (Pe = 0.29167)
Qxx (Pcc = 0.70833)

0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

H
is

tr
og

ra
m

Quality Measure

With Path Correction

Qxy (Pe = 0.29167)
Qxx (Pcc = 0.70833)

Figure 144: Histogram of quality measures for Experiment 13–Satimage data set.
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Figure 145: Quality measures for Experiment 14–Satimage data set.
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Figure 146: Confusion matrix for Experiment 14–Satimage data set.
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Figure 147: Histogram of quality measures for Experiment 14–Satimage data set.
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Figure 148: Quality measures for Experiment 15–Satimage data set.
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Figure 149: Confusion matrix for Experiment 15–Satimage data set.
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Figure 150: Histogram of quality measures for Experiment 15–Satimage data set.
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Figure 151: Quality measures for Experiment 16–Satimage data set.
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Figure 152: Confusion matrix for Experiment 16–Satimage data set.
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Figure 153: Histogram of quality measures for Experiment 16–Satimage data set.
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6 Conclusions

In this final section, we provide a set of concise conclusions that are based on the experimental
study of this report.

1. The tree-based classifiers developed in [1], including the binary-tree classifier (BTC), bi-
nary hypertree classifier (BHC), and binary supertree classifier (BSC), were studied using
synthetic and collected data sets. The basic operation of the classifiers was validated.

2. The algorithm for joint automatic blind specification of the tree’s topology, superclass speci-
fications, and feature-vector parameters results in classifiers that are adept at embodying the
basic ambiguity structure of the problem at hand. This was demonstrated with synthetic and
collected one- and two-dimensional data sets.

3. The basic performance ordering of � BTC � � BHC
�

BSC was confirmed for the synthetic
two-dimensional problem, which contained severe class ambiguities.

4. The basic performance ordering was not confirmed for the synthetic one-dimensional prob-
lem (involving automatic recognition of each of sixteen maximal-length shift-register se-
quences). In this case, an individual BTC could have better performance than the BHC. We
conjecture that this contradiction of our mathematical analysis in [1] arises from the breaking
of our fundamental assumption that the probability of error at a decision node is a smooth
function of the node’s ambiguity.

5. The notion of path correction was introduced and was shown to dramatically improve per-
formance for problems involving weak class ambiguities and to have little effect (positive or
negative) for problems possessing severe class ambiguities.

6. Further work should focus on refinement of the construction of a BHC from constituent
BTCs. In particular, the algorithm needs to make better joint use of node ambiguity, node
feature-vector strength, and local tree topology in order to improve the selection of nodes to
be included as hypertree jump points.
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